Spatial Hidden Symmetries in Pattern Formation

  • M. Gabriela M. Gomes
  • Isabel S. Labouriau
  • Eliana M. Pinho
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)


Partial differential equations that are invariant under Euclidean transformations are traditionally used as models in pattern formation. These models are often posed on finite domains (in particular, multidimensional rectangles). Defining the correct boundary conditions is often a very subtle problem. On the other hand, there is pressure to choose boundary conditions which are attractive to mathematical treatment. Geometrical shapes and mathematically friendly boundary conditions usually imply spatial symmetry. The presence of symmetry effects that are “hidden” in the boundary conditions was noticed and carefully investigated by several researchers during the past 15–20 years. Here we review developments in this subject and introduce a unifying formalism to uncover spatial hidden symmetries (hidden translations and hidden rotations) in multidimensional rectangular domains with Neumann boundary conditions.


Pattern Formation Neumann Boundary Condition Domain Versus Rectangular Domain Bifurcation Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Armbruster, D. & Dangelmayr, G. (1987) Coupled stationary bifurcations in non-flux boundary value problems. Math. Proc. Camb. Phil. Soc. 101, 167–192.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    Ashwin, P. (1992) High corank steady-state mode interactions on a rectangle, in Bifurcation and Symmetry (ed. E.L. Algower, K. Borner & M. Golubitsky) ISNM vol. 104, Basel, Birkhäuser, 23–33.Google Scholar
  3. [3]
    Ashwin, P. & Mei, Z. (1994) A Hopf bifurcation with Robin boundary conditions, Journal of Dynamics and Differential Equations 6, 487–503.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    Ashwin, P. & Mei, Z. (1995) Normal form for Hopf bifurcation of partial differential equations on the square, Nonlinearity 8, 715–734.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    Ashwin, P., Moroz, I. & Roberts, M. (1995) Bifurcations of stationary, standing, and travelling waves in triply diffusive convection. Physica D 81, 374–397.Google Scholar
  6. [6]
    Castro, S.B.S.D. (1990) Symmetry and bifurcation of periodic solutions in Neumann boundary value problems. MSc Thesis, University of Warwick.Google Scholar
  7. [7]
    Chien, C.S., Kuo, Y.J. & Mei, Z. (1998) Symmetry and scaling properties of the von Kármán equations. To appear in ZAMM.Google Scholar
  8. [8]
    Crawford, J.D. (1991) Normal forms for driven surface waves: boundary conditions, symmetry and genericity. Physica 52D, 429–457.MathSciNetGoogle Scholar
  9. [9]
    Crawford, J.D. (1991) Surface waves in non-square containers with square symmetry. Phys. Rev. Lett. 67, 441–444.CrossRefGoogle Scholar
  10. [10]
    Crawford, J.D. (1994) D 4+T 2 mode interactions and hidden rotation symmetry. Nonlinearity 7, 697–739.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    Crawford, J.D., Gollub, J.P. & Lane, D. (1993) Hidden symmetries of parametrically forced waves. Nonlinearity 6, 119–164.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    Crawford, J.D., Golubitsky, M., Gomes, M.G.M., Knobloch, E. & Stewart, I.N. (1991) Boundary conditions as symmetry constraints, in Singularity Theory and Its Applications, Warwick 1989 (ed. R.M. Roberts & I.N. Stewart) Lecture Notes in Mathematics, vol 2, Heidelberg, Springer.Google Scholar
  13. [13]
    Cross, M.C. & Hohenberg, P.C. (1993) Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112.CrossRefGoogle Scholar
  14. [14]
    Dangelmayr, G. & Armbruster, D. (1986) Steady-state mode interactions in the presence of O(2) symmetry and in non-flux boundary value problems, in Multiparameter Bifurcation Theory (ed. M. Golubitsky & J. Guckenheimer) Contemporary Math. 56, Providence, RI, American Mathematical Society, 53–68.CrossRefGoogle Scholar
  15. [15]
    Dionne, B. & Golubitsky, M. (1992) Planforms in Two and Three Dimensions. Z. Angew. Math. Phys. 43, 36–62.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    Dionne, B. (1993) Planforms in Three Dimensions. Z. Angew. Math. Phys. 44(4), 673–694.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    Epstein, I.R. & Golubitsky, M. (1993) Symmetric patterns in linear arrays of coupled celld. Chaos 3(1), 1–5.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    Field, M., Golubitsky, M. & Stewart, I.N. (1990) Bifurcations on hemispheres. J. Nonlinear Sci. 1, 201–223.MathSciNetCrossRefGoogle Scholar
  19. [19]
    Fujii, H., Mimura, M. & Nishiura, Y. (1982) A picture of the global bifurcation diagram in ecological interacting and diffusing systems. Physica 5D, 1–42.MathSciNetGoogle Scholar
  20. [20]
    Gillis, D. & Golubitsky, M. (1997) Pattern in square arrays of coupled cells. JMAA 208, 487–509.MathSciNetzbMATHGoogle Scholar
  21. [21]
    Golubitsky, M. & Schaeffer, D. (1985) Singularities and Groups in Bifurcation Theory. Vol.1, Appl. Math. Sci. 51, Springer-Verlag, New York.Google Scholar
  22. [22]
    Golubitsky, M., Stewart, I.N. & Schaeffer, D. (1988) Singularities and Groups in Bifurcation Theory. Vol.2, Appl. Math. Sci. 69, Springer-Verlag, New York.Google Scholar
  23. [23]
    Gomes, M.G.M. (1989) Steady-state mode interactions in rectangular domains. MSc Thesis, University of Warwick.Google Scholar
  24. [24]
    Gomes, M.G.M. (1992) Symmetries in bifurcation theory: the appropriate context PhD Thesis, University of Warwick.Google Scholar
  25. [25]
    Gomes, M.G.M. & Stewart, I.N. (1994) Steady PDEs on generalized rectangles: a change of genericity in mode interactions. Nonlinearity 7 (1994) 253–272.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    Gomes, M.G.M. & Stewart, I.N. (1994) Hopf bifurcations on generalized rectangles with Neumann boundary conditions, in Dynamics, Bifurcations, and Symmetries: New Trends and New Tools, Cargèse 1993, (ed. P Chossat), Kluwer Academic Publishers, 139–158.Google Scholar
  27. [27]
    Gomes, M.G.M. & Stewart, I.N. (1997) Symmetry of Generic Bifurcations in Cubic Domains. Int. Jour. Bif. and Chaos, 7(1) (1997) 147–171.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    Guckenheimer, J. & Holmes, P. (1983) Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Appl. Math. Sci. 42, Springer-Verlag, New York.Google Scholar
  29. [29]
    Complex Spatial Patterns on Planar Continua. Phys. Rev. Lett. 71(9), 1367–1370.Google Scholar
  30. [30]
    Healey, T.J. & Kielhöfer (1992) Hidden symmetry of fully nonlinear boundary conditions in elliptic equations: global bifurcation and nodal structure. Results in Math. 21, 83–92.zbMATHGoogle Scholar
  31. [31]
    Hirschberg, P. & Knobloch, E. (1997) Mode Interactions in Large Aspect Ratio Convection. J. Nonlinear Science, 7(6), 537–556.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    Impey, M.D., Riley, D.S. & Wheeler, A.A. (1993) Bifurcation analysis of cellular interfaces in unidirectional solidification of a dilute binary mixture. SIAM J. Appl. Math. 53, 78–95.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [33]
    Impey, M., Roberts, M. & Stewart. I. (1996) Hidden Symmetries in Lapwood Convection. Dyn. Stab. Sys., 11 (3), 155–192.Google Scholar
  34. [34]
    Iooss, G., Mielke, A. & Demay, Y. (1989) Theory of the steady Ginzburg-Landau equation in hydrodynamic stability problems. Eur. J. Mech. B/Fluids 8, 229.MathSciNetzbMATHGoogle Scholar
  35. [35]
    Manoel, M. (1995) Hidden Symmetries in Bifurcation Problems: the Singularity Theory. PhD Thesis, University of Warwick.Google Scholar
  36. [36]
    Manoel, M. & Stewart, I. (1995) On the Classification of Bifurcations with Hidden Symmetries. University of Warwick preprint.Google Scholar
  37. [37]
    Mei, Z. (1992) Utilization of scaling laws and symmetries in the path following of a semilinear elliptic problem, in Bifurcation and symmetry: Cross Influence and Application (eds. E.L. Allgower, K. Böhmer and M. Golubitsky), Birkhäuser Verlag, Basel, 263–273.CrossRefGoogle Scholar
  38. [38]
    Mei, Z. (1993) Solution branches of a semilinear elliptic problem at corank 2 bifurcation points with Neumann boundary conditions, Proceedings of the Royal Society of Edinburgh 123A, 479–495.Google Scholar
  39. [39]
    Meinhardt, H. (1982) Models of Biological Pattern Formation. Academic Press, New York.Google Scholar
  40. [40]
    Melbourne, I. (1998) Derivation of the time-dependent Ginzburg-Landau equation on the line. J. Nonlin. Sci. 8, 1–15.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    Mihaljan, J.M. (1962) A rigorous exposition of the Boussinesq approximation applicable to a thin layer of fluid. Astrophys. J. 136, 1126–1133.MathSciNetCrossRefGoogle Scholar
  42. [42]
    Murray, J.D. (1989) Mathematical Biology. Springer, Berlin.Google Scholar
  43. [43]
    Neveling, M. & Dangelmayr, G. (1988) Bifurcation analysis of interacting stationary modes in thermohaline convection. Phys. Rev. A38, 2536–2543.Google Scholar
  44. [44]
    Newell, A.C. (1985) Solitons in Mathematics and Physics, SIAM, CBMS Lecture Series.Google Scholar
  45. [45]
    Newell, A.C. & Whitehead, J.A. (1969) Finite bandwidth, finite amplitude convection. J. Fluid Mech. 38, 279.zbMATHCrossRefGoogle Scholar
  46. [46]
    Nicolis, G. & Prigogine, I. (1977) Self-Organization in Nonequilibrium Systems. Wiley, New York.zbMATHGoogle Scholar
  47. [47]
    Olver, P.J. (1993) Applications of Lie Groups to Differential Equations. Springer-Verlag, New York.zbMATHCrossRefGoogle Scholar
  48. [48]
    Pinho, E.M. (1998) Simetrias Escondidas em Equações Diferenciais Parciais. MSc Thesis, University of Porto.Google Scholar
  49. [49]
    Segel, L.A. (1969) Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203–224.zbMATHCrossRefGoogle Scholar
  50. [50]
    Simonelli, F. & Gollub, J.P. (1989) Surface wave mode interactions: effects of symmetry and degeneracy. J. Fluid Mech. 199, 471.MathSciNetCrossRefGoogle Scholar
  51. [51]
    Sivashinsky, G.I. (1977) Nonlinear analysis of hydrodynamic instability in flames-I. Derivation of the basic equations. Acta Astronautica 4, 1177–1206.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    Turing, A. (1952) The Chemical Basis of Morphogenesis. Phil. Trans. Roy. Soc. Lond. B 237, 37.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • M. Gabriela M. Gomes
    • 1
  • Isabel S. Labouriau
    • 1
  • Eliana M. Pinho
    • 2
  1. 1.Centro de Matemática AplicadaUniversidade do PortoPortoPortugal
  2. 2.Universidade da Beira Interior, Rua Marquês de Àvila e BolamaCovilhãPortugal

Personalised recommendations