Skip to main content

Symmetry and Pattern Formation in Coupled Cell Networks

  • Chapter
Pattern Formation in Continuous and Coupled Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 115))

Abstract

We describe some basic concepts and techniques from symmetric bifurcation theory in the context of coupled systems of cells (‘oscillator networks’). These include criteria for the existence of symmetry-breaking branches of steady and periodic states. We emphasize the role of symmetry as a general framework for such analyses. As well as overt symmetries of the network we discuss internal symmetries of the cells, ‘hidden’ symmetries related to Neumann boundary conditions, and spatio-temporal symmetries of periodic states. The methods are applied to a model central pattern generator for legged animal locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. C. ALEXANDER, Patterns at primary Hopf bifurcations of a plexus of identical oscillators, SIAM J. Appl. Math., 46, (1986), 199–221.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. McN. ALEXANDER, Terrestrial locomotion, In: Mechanics and Energetics of Animal Locomotion, (R. McN. Alexander and J.M. Goldspink, eds), Chapman and Hall, London, (1977), 168–203.

    Google Scholar 

  3. D. G. ARONSON, M. GOLUBITSKY AND M. KRUPA, Coupled arrays of Josephson junctions and bifurcation of maps with SN symmetry, Nonlinearity, 4, (1991), 861–902.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. G. BROWN, The Classification of Bifurcations in Maps with Symmetry, PhD Thesis, Math. Inst., U. Warwick, 1992.

    Google Scholar 

  5. P.-L. BuONO, Models of Central Pattern Generators Using Symmetrically Coupled Cell Systems, PhD Thesis, Math. Dept., U. Houston, 1998.

    Google Scholar 

  6. S. B.S.D. CASTRO, Symmetry and Bifurcation of Periodic Solutions in Neumann Boundary Value Problems, MSc Thesis, Math. Inst., U. Warwick, 1990.

    Google Scholar 

  7. G. CICOGNA, Symmetry breakdown from bifurcations, Lett. Nuovo Cimento, 31, (1981), 600–602.

    Article  MathSciNet  Google Scholar 

  8. A.H. COHEN, P.J. HOLMES AND R.H. RAND, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model, J. Math. Biol., 13, (1982), 345–369.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.J. COLLINS, C.C. CHOW, A.C. CAPELA AND T.T. IMHOFF, Aperiodic stochastic resonance, Phys. Rev. E, 54, (1996), 5575–5584.

    Article  Google Scholar 

  10. J.J. COLLINS AND S.A. RICHMOND, Hard-wired central pattern generators for quadrupedal locomotion, Biol. Cybern., 71, (1994), 375–3

    Article  MATH  Google Scholar 

  11. J.J. COLLINS AND I. STEWART, Symmetry-breaking bifurcation: a possible mechanism for 2:1 frequency-locking in animal locomotion, J. Math. Biol., 30, (1992), 827–838.

    Article  MathSciNet  MATH  Google Scholar 

  12. J.J. COLLINS AND I. STEWART, Coupled nonlinear oscillators and the symmetries of animal gaits, J. Nonlin. Sci., 3, (1993), 349–392.

    Article  MathSciNet  MATH  Google Scholar 

  13. J.J. COLLINS AND I. STEWART, Hexapodal gaits and coupled nonlinear oscillator models, Biol. Cybern., 68, (1993), 287–298.

    Article  MATH  Google Scholar 

  14. J.J. COLLINS AND I. STEWART, A group-theoretic approach to rings of coupled biological oscillators, Biol. Cybern., 71, (1994), 95–103.

    Article  MATH  Google Scholar 

  15. G. DANGELMAYR, W. GüTTINGER, AND M. WEGELIN, Hopf bifurcation with D 3 × D 3 symmetry, Z. Angew. Math. Phys., 44, (1993), 595–638.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. DANGELMAYR, W. GüTTINGER, J. OPPENLäNDER, J. TOMES, AND M. WEGELIN, Synchronized patterns in hierarchical networks of neuronal oscillators with D 3 × D 3 symmetry, Belg. J. Math., to appear.

    Google Scholar 

  17. M. DELLNITZ, M. FIELD, M. GOLUBITSKY, A. HOHMANN AND J. MA, Cycling chaos, Intern. J. Bifur. & Chaos, 5(4), (1995), 1243–1247.

    Article  MathSciNet  MATH  Google Scholar 

  18. A.P.S. DIAS, Hopf bifurcation for wreath products, Nonlinearity, 11, (1998), 247–264.

    Article  MathSciNet  MATH  Google Scholar 

  19. A.P.S. DIAS AND I. STEWART, Symmetry-breaking bifurcations of wreath product systems, J. Nonlin. Sci., to appear.

    Google Scholar 

  20. A.P.S. DIAS AND I. STEWART, Invariant theory for wreath product groups, preprint 36, 1998, Math. Institute, Univ. of Warwick, 1998.

    Google Scholar 

  21. B. DiONNE, M. GOLUBITSKY AND I. STEWART, Coupled cells with internal symmetry, Part I: wreath products, Nonlinearity, 9, (1996), 559–574.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. DiONNE, M. GOLUBITSKY AND I. STEWART, Coupled cells with internal symmetry, Part II: direct products, Nonlinearity, 9, (1996), 575–599.

    Article  MathSciNet  MATH  Google Scholar 

  23. I.R. EPSTEIN AND M. GOLUBITSKY, Symmetric patterns in linear arrays of coupled cells, Chaos, 3(1), (1993), 1–5.

    Article  MathSciNet  MATH  Google Scholar 

  24. G.B. ERMENTROUT AND N. KOPELL, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29, (1991), 195–217.

    Google Scholar 

  25. M.J. FIELD, Heteroclinic cycles in symmetrically coupled cell systems, This volume.

    Google Scholar 

  26. M.J. FIELD, Lectures on Bifurcations, Dynamics and Symmetry, Pitman Research Notes in Math., 356, (1996).

    Google Scholar 

  27. D. GiLLis AND M. GOLUBITSKY, Patterns in square arrays of coupled cells, JMAA., 208, (1997), 487–509.

    MathSciNet  MATH  Google Scholar 

  28. M. GOLUBITSKY AND I.N. STEWART, Hopf bifurcation in the presence of symmetry, Arch. Rational Mech. Anal., 87, (1985), 107–165.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. GOLUBITSKY AND I.N. STEWART, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, In: Multiparameter Bifurcation Theory, (M. Golubitsky and J. Guckenheimer, Eds), Contemporary Math., 56, (1986), 131–173.

    Google Scholar 

  30. M. GOLUBITSKY, I. STEWART, P.L. BUONO AND J.J. COLLINS, A modular network for legged locomotion, Physica D, 115, (1998), 56–72.

    Article  MathSciNet  MATH  Google Scholar 

  31. M. GOLUBITSKY, I. STEWART AND B. DIONNE, Coupled cells: wreath products and direct products, In: Dynamics, Bifurcation and Symmetry, (P. Chossat, ed.), NATO ARW Series, Kluwer, Amsterdam, (1994), 127–138.

    Chapter  Google Scholar 

  32. M. GOLUBITSKY, I.N. STEWART AND D. G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, vol.II, Appl. Math. Sci., 69, Springer-Verlag, New York, (1988).

    Google Scholar 

  33. M.G.M. GOMES, I.S. LABOURIAU AND E.M. PINHO, Spatial hidden symmetries in pattern formation, This volume.

    Google Scholar 

  34. S. GRILLNER, Locomotion in vertebrates: central mechanisms and reflex interaction, Physiol. Rev., 55, (1975), 247–304.

    Article  Google Scholar 

  35. S. GRILLNER, Control of locomotion in bipeds, tetrapods and fish, In: Handbook of Physiology, Sect. 1: The Nervous System, Vol. II: Motor Control, (V.B. Brooks, ed), Bethesda, American Physiological Society, (1981), 1179–1236.

    Google Scholar 

  36. S. GRILLNER, Neurobiological bases of rhythmic motor acts in vertebrates, Science, 228, (1985), 143–1

    Article  Google Scholar 

  37. S. GRILLNER, Neural networks for vertebrate locomotion, Scientific American, 274, No. 1, (1996), 48–53.

    Article  Google Scholar 

  38. N. KOPELL AND G.B. ERMENTROUT, Symmetry and phaselocking in chains of weakly coupled oscillators, Comm. Pure Appl. Math., 39, (1986), 623–660.

    Article  MathSciNet  MATH  Google Scholar 

  39. N. KOPELL AND G.B. ERMENTROUT, Coupled oscillators and the design of central pattern generators, Math. Biosci., 89, (1988), 14–23.

    MathSciNet  Google Scholar 

  40. N. KOPELL AND G.B. ERMENTROUT, Phase transitions and other phenomena in chains of oscillators, SIAM J. Appl. Math., 50, (1990), 1014–1052.

    Article  MathSciNet  MATH  Google Scholar 

  41. K.G. PEARSON, Common principles of motor control in vertebrates and invertebrates, Annu. Rev. Neurosci., 16, (1993), 265–297.

    Article  Google Scholar 

  42. R.H. RAND, A.H. COHEN AND P.J. HOLMES, Systems of coupled oscillators as models of central pattern generators, In: Neural Control of Rhythmic Movements in Vertebrates, (A.H. Cohen, S. Rossignol and S. Grillner, eds), Wiley, New York, (1988), 333–367.

    Google Scholar 

  43. D.H. SATTINGER, Branching in the presence of symmetry, CBMS-NSF Conference Notes, 40, SIAM, Philadelphia, (1983).

    Google Scholar 

  44. G. SCHöNER, W.Y. JIANG AND J.A.S. KELSO, A synergetic theory of quadrupedal gaits and gait transitions, J. Theor. Biol., 142, (1990), 359–391.

    Article  Google Scholar 

  45. M.L. SHIK AND G.N. ORLOVSKY, Neurophysiology of locomotor automatism, Physiol. Rev., 56, (1976), 465–501.

    Google Scholar 

  46. S. SMALE, A mathematical model of two cells via Turing’s equation, In: Some Mathematical Questions in Biology V, (J.D. Cowan, ed), Amer. Math. Soc., Lecture Notes on Mathematics in the Life Sciences, 6, (1974), 15–26.

    Google Scholar 

  47. P.S.G. STEIN, Motor systems, with specific reference to the control of locomotion, Annu. Rev. Neurosci., 1, (1978), 61–81.

    Article  Google Scholar 

  48. A. VANDERBAUWHEDE, Local Bifurcation and Symmetry, Habilitation Thesis, Rijkuniversiteit Gent, (1980).

    Google Scholar 

  49. T.L. WILLIAMS, K.A. SIGVARDT, N. KOPELL, G.B. ERMENTROUT AND M.P. REMLER, Forcing of coupled nonlinear oscillators: studies of inter segmental coordination in the lamprey locomotor central pattern generator, J. Neurophysiol, 64, (1990), 862–871.

    Google Scholar 

  50. D. WOOD, Coupled Oscillators with Internal Symmetries, PhD Thesis, Math. Inst., U. Warwick, (1995).

    Google Scholar 

  51. D. WOOD, Hopf bifurcations in three coupled oscillators with internal Z 2 symmetries, Dyn. Stab. Sys., 13, (1998), 55–93.

    Article  MATH  Google Scholar 

  52. H. YUASA AND M. ITO, Coordination of many oscillators and generation of locomotory patterns, Biol. Cybern, 63, (1990), 177–184.

    Article  MATH  Google Scholar 

  53. H. YUASA AND M. ITO, Generation of locomotive patterns and self-organization, J. Robot. Mechatron, 4, (1992), 142–147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Golubitsky, M., Stewart, I. (1999). Symmetry and Pattern Formation in Coupled Cell Networks. In: Golubitsky, M., Luss, D., Strogatz, S.H. (eds) Pattern Formation in Continuous and Coupled Systems. The IMA Volumes in Mathematics and its Applications, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1558-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1558-5_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7192-5

  • Online ISBN: 978-1-4612-1558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics