Advertisement

Symmetry and Pattern Formation in Coupled Cell Networks

  • Martin Golubitsky
  • Ian Stewart
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)

Abstract

We describe some basic concepts and techniques from symmetric bifurcation theory in the context of coupled systems of cells (‘oscillator networks’). These include criteria for the existence of symmetry-breaking branches of steady and periodic states. We emphasize the role of symmetry as a general framework for such analyses. As well as overt symmetries of the network we discuss internal symmetries of the cells, ‘hidden’ symmetries related to Neumann boundary conditions, and spatio-temporal symmetries of periodic states. The methods are applied to a model central pattern generator for legged animal locomotion.

Keywords

Hopf Bifurcation Central Pattern Generator Wreath Product Isotropy Subgroup Internal Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. C. ALEXANDER, Patterns at primary Hopf bifurcations of a plexus of identical oscillators, SIAM J. Appl. Math., 46, (1986), 199–221.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    R. McN. ALEXANDER, Terrestrial locomotion, In: Mechanics and Energetics of Animal Locomotion, (R. McN. Alexander and J.M. Goldspink, eds), Chapman and Hall, London, (1977), 168–203.Google Scholar
  3. [3]
    D. G. ARONSON, M. GOLUBITSKY AND M. KRUPA, Coupled arrays of Josephson junctions and bifurcation of maps with SN symmetry, Nonlinearity, 4, (1991), 861–902.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    A. G. BROWN, The Classification of Bifurcations in Maps with Symmetry, PhD Thesis, Math. Inst., U. Warwick, 1992.Google Scholar
  5. [5]
    P.-L. BuONO, Models of Central Pattern Generators Using Symmetrically Coupled Cell Systems, PhD Thesis, Math. Dept., U. Houston, 1998.Google Scholar
  6. [6]
    S. B.S.D. CASTRO, Symmetry and Bifurcation of Periodic Solutions in Neumann Boundary Value Problems, MSc Thesis, Math. Inst., U. Warwick, 1990.Google Scholar
  7. [7]
    G. CICOGNA, Symmetry breakdown from bifurcations, Lett. Nuovo Cimento, 31, (1981), 600–602.MathSciNetCrossRefGoogle Scholar
  8. [8]
    A.H. COHEN, P.J. HOLMES AND R.H. RAND, The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model, J. Math. Biol., 13, (1982), 345–369.MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    J.J. COLLINS, C.C. CHOW, A.C. CAPELA AND T.T. IMHOFF, Aperiodic stochastic resonance, Phys. Rev. E, 54, (1996), 5575–5584.CrossRefGoogle Scholar
  10. [10]
    J.J. COLLINS AND S.A. RICHMOND, Hard-wired central pattern generators for quadrupedal locomotion, Biol. Cybern., 71, (1994), 375–3zbMATHCrossRefGoogle Scholar
  11. [11]
    J.J. COLLINS AND I. STEWART, Symmetry-breaking bifurcation: a possible mechanism for 2:1 frequency-locking in animal locomotion, J. Math. Biol., 30, (1992), 827–838.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J.J. COLLINS AND I. STEWART, Coupled nonlinear oscillators and the symmetries of animal gaits, J. Nonlin. Sci., 3, (1993), 349–392.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    J.J. COLLINS AND I. STEWART, Hexapodal gaits and coupled nonlinear oscillator models, Biol. Cybern., 68, (1993), 287–298.zbMATHCrossRefGoogle Scholar
  14. [14]
    J.J. COLLINS AND I. STEWART, A group-theoretic approach to rings of coupled biological oscillators, Biol. Cybern., 71, (1994), 95–103.zbMATHCrossRefGoogle Scholar
  15. [15]
    G. DANGELMAYR, W. GüTTINGER, AND M. WEGELIN, Hopf bifurcation with D 3 × D 3 symmetry, Z. Angew. Math. Phys., 44, (1993), 595–638.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    G. DANGELMAYR, W. GüTTINGER, J. OPPENLäNDER, J. TOMES, AND M. WEGELIN, Synchronized patterns in hierarchical networks of neuronal oscillators with D 3 × D 3 symmetry, Belg. J. Math., to appear.Google Scholar
  17. [17]
    M. DELLNITZ, M. FIELD, M. GOLUBITSKY, A. HOHMANN AND J. MA, Cycling chaos, Intern. J. Bifur. & Chaos, 5(4), (1995), 1243–1247.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    A.P.S. DIAS, Hopf bifurcation for wreath products, Nonlinearity, 11, (1998), 247–264.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    A.P.S. DIAS AND I. STEWART, Symmetry-breaking bifurcations of wreath product systems, J. Nonlin. Sci., to appear.Google Scholar
  20. [20]
    A.P.S. DIAS AND I. STEWART, Invariant theory for wreath product groups, preprint 36, 1998, Math. Institute, Univ. of Warwick, 1998.Google Scholar
  21. [21]
    B. DiONNE, M. GOLUBITSKY AND I. STEWART, Coupled cells with internal symmetry, Part I: wreath products, Nonlinearity, 9, (1996), 559–574.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    B. DiONNE, M. GOLUBITSKY AND I. STEWART, Coupled cells with internal symmetry, Part II: direct products, Nonlinearity, 9, (1996), 575–599.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    I.R. EPSTEIN AND M. GOLUBITSKY, Symmetric patterns in linear arrays of coupled cells, Chaos, 3(1), (1993), 1–5.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    G.B. ERMENTROUT AND N. KOPELL, Multiple pulse interactions and averaging in systems of coupled neural oscillators, J. Math. Biol., 29, (1991), 195–217.Google Scholar
  25. [25]
    M.J. FIELD, Heteroclinic cycles in symmetrically coupled cell systems, This volume.Google Scholar
  26. [26]
    M.J. FIELD, Lectures on Bifurcations, Dynamics and Symmetry, Pitman Research Notes in Math., 356, (1996).Google Scholar
  27. [27]
    D. GiLLis AND M. GOLUBITSKY, Patterns in square arrays of coupled cells, JMAA., 208, (1997), 487–509.MathSciNetzbMATHGoogle Scholar
  28. [28]
    M. GOLUBITSKY AND I.N. STEWART, Hopf bifurcation in the presence of symmetry, Arch. Rational Mech. Anal., 87, (1985), 107–165.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    M. GOLUBITSKY AND I.N. STEWART, Hopf bifurcation with dihedral group symmetry: coupled nonlinear oscillators, In: Multiparameter Bifurcation Theory, (M. Golubitsky and J. Guckenheimer, Eds), Contemporary Math., 56, (1986), 131–173.Google Scholar
  30. [30]
    M. GOLUBITSKY, I. STEWART, P.L. BUONO AND J.J. COLLINS, A modular network for legged locomotion, Physica D, 115, (1998), 56–72.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. GOLUBITSKY, I. STEWART AND B. DIONNE, Coupled cells: wreath products and direct products, In: Dynamics, Bifurcation and Symmetry, (P. Chossat, ed.), NATO ARW Series, Kluwer, Amsterdam, (1994), 127–138.CrossRefGoogle Scholar
  32. [32]
    M. GOLUBITSKY, I.N. STEWART AND D. G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, vol.II, Appl. Math. Sci., 69, Springer-Verlag, New York, (1988).Google Scholar
  33. [33]
    M.G.M. GOMES, I.S. LABOURIAU AND E.M. PINHO, Spatial hidden symmetries in pattern formation, This volume.Google Scholar
  34. [34]
    S. GRILLNER, Locomotion in vertebrates: central mechanisms and reflex interaction, Physiol. Rev., 55, (1975), 247–304.CrossRefGoogle Scholar
  35. [35]
    S. GRILLNER, Control of locomotion in bipeds, tetrapods and fish, In: Handbook of Physiology, Sect. 1: The Nervous System, Vol. II: Motor Control, (V.B. Brooks, ed), Bethesda, American Physiological Society, (1981), 1179–1236.Google Scholar
  36. [36]
    S. GRILLNER, Neurobiological bases of rhythmic motor acts in vertebrates, Science, 228, (1985), 143–1CrossRefGoogle Scholar
  37. [37]
    S. GRILLNER, Neural networks for vertebrate locomotion, Scientific American, 274, No. 1, (1996), 48–53.CrossRefGoogle Scholar
  38. [38]
    N. KOPELL AND G.B. ERMENTROUT, Symmetry and phaselocking in chains of weakly coupled oscillators, Comm. Pure Appl. Math., 39, (1986), 623–660.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [39]
    N. KOPELL AND G.B. ERMENTROUT, Coupled oscillators and the design of central pattern generators, Math. Biosci., 89, (1988), 14–23.MathSciNetGoogle Scholar
  40. [40]
    N. KOPELL AND G.B. ERMENTROUT, Phase transitions and other phenomena in chains of oscillators, SIAM J. Appl. Math., 50, (1990), 1014–1052.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    K.G. PEARSON, Common principles of motor control in vertebrates and invertebrates, Annu. Rev. Neurosci., 16, (1993), 265–297.CrossRefGoogle Scholar
  42. [42]
    R.H. RAND, A.H. COHEN AND P.J. HOLMES, Systems of coupled oscillators as models of central pattern generators, In: Neural Control of Rhythmic Movements in Vertebrates, (A.H. Cohen, S. Rossignol and S. Grillner, eds), Wiley, New York, (1988), 333–367.Google Scholar
  43. [43]
    D.H. SATTINGER, Branching in the presence of symmetry, CBMS-NSF Conference Notes, 40, SIAM, Philadelphia, (1983).Google Scholar
  44. [44]
    G. SCHöNER, W.Y. JIANG AND J.A.S. KELSO, A synergetic theory of quadrupedal gaits and gait transitions, J. Theor. Biol., 142, (1990), 359–391.CrossRefGoogle Scholar
  45. [45]
    M.L. SHIK AND G.N. ORLOVSKY, Neurophysiology of locomotor automatism, Physiol. Rev., 56, (1976), 465–501.Google Scholar
  46. [46]
    S. SMALE, A mathematical model of two cells via Turing’s equation, In: Some Mathematical Questions in Biology V, (J.D. Cowan, ed), Amer. Math. Soc., Lecture Notes on Mathematics in the Life Sciences, 6, (1974), 15–26.Google Scholar
  47. [47]
    P.S.G. STEIN, Motor systems, with specific reference to the control of locomotion, Annu. Rev. Neurosci., 1, (1978), 61–81.CrossRefGoogle Scholar
  48. [48]
    A. VANDERBAUWHEDE, Local Bifurcation and Symmetry, Habilitation Thesis, Rijkuniversiteit Gent, (1980).Google Scholar
  49. [49]
    T.L. WILLIAMS, K.A. SIGVARDT, N. KOPELL, G.B. ERMENTROUT AND M.P. REMLER, Forcing of coupled nonlinear oscillators: studies of inter segmental coordination in the lamprey locomotor central pattern generator, J. Neurophysiol, 64, (1990), 862–871.Google Scholar
  50. [50]
    D. WOOD, Coupled Oscillators with Internal Symmetries, PhD Thesis, Math. Inst., U. Warwick, (1995).Google Scholar
  51. [51]
    D. WOOD, Hopf bifurcations in three coupled oscillators with internal Z 2 symmetries, Dyn. Stab. Sys., 13, (1998), 55–93.zbMATHCrossRefGoogle Scholar
  52. [52]
    H. YUASA AND M. ITO, Coordination of many oscillators and generation of locomotory patterns, Biol. Cybern, 63, (1990), 177–184.zbMATHCrossRefGoogle Scholar
  53. [53]
    H. YUASA AND M. ITO, Generation of locomotive patterns and self-organization, J. Robot. Mechatron, 4, (1992), 142–147.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Martin Golubitsky
    • 1
  • Ian Stewart
    • 2
  1. 1.Mathematics DepartmentUniversity of HoustonHoustonUSA
  2. 2.Mathematics InstituteUniversity of WarwickCoventryUK

Personalised recommendations