Advertisement

Heteroclinic Cycles and Phase Turbulence

  • F.H. Busse
  • R.M. Clever
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)

Abstract

A new heteroclinic cycle is demonstrated in the case of thermal convection in a layer heated from below and rotating about a horizontal axis. This system can be realized experimentally through the use of the centrifugal force as effective gravity in the system of the rotating cylindrical annulus.

Keywords

Nusselt Number Rayleigh Number Heteroclinic Orbit Heteroclinic Cycle Axial Roll 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    KRUPA, M., Robust heteroclinic cycles, J. Nonlinear Sci., 7, 129–176, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    KüPPERS, G., AND LORTZ, D., Transition from laminar convection to thermal turbulence in a rotating fluid layer, J. Fluid Mech., 35, 609–620, 1969.zbMATHCrossRefGoogle Scholar
  3. [3]
    BUSSE, F.H., AND CLEVER, R.M., Nonstationary convection in a rotating system, 376–385 in Recent Developments in Theoretical and Experimental Fluid Mechanics, U. Müller, K.G. Roesner, B. Schmidt, eds., Springer, 1979.Google Scholar
  4. [4]
    BUSSE, F.H., Transition to turbulence via the statistical limit cycle route, 197–202 in Turbulence and Chaotic Phenomena in Fluids, T. Tatsumi, ed., Elsevier, 1984.Google Scholar
  5. [5]
    Tu, Y., AND CROSS, M.C., Chaotic Domain Structure in Rotating Convection, Phys. Rev. Lett., 69, 2515–2518, 1992.CrossRefGoogle Scholar
  6. [6]
    BUSSE, F.H., AND HEIKES, K.E., Convection in a rotating layer: A simple case of turbulence, SCIENCE, 208, 173–175, 1980.CrossRefGoogle Scholar
  7. [7]
    HEIKES, K.E., AND BUSSE, F.H., Weakly nonlinear turbulence in a rotating convection layer, Annals N.Y. Academy of Sciences, 357, 28–36, 1980.CrossRefGoogle Scholar
  8. [8]
    ZHONG, F., ECKE, R.E., AND STEINBERG, V., Asymmetric modes and the transition to vortex structures in rotating Rayleigh-Bénard convection, Phys. Rev. Lett., 67, 2473–2476, 1991.CrossRefGoogle Scholar
  9. [9]
    Hu, Y., ECKE, R.E., AND AHLERS, G., Time and Length Scales in Rotating Rayleigh-Bénard Convection, Phys. Rev. Lett., 74, 5040–5043, 1995.CrossRefGoogle Scholar
  10. [10]
    Hu, Y., ECKE, R.E., AND AHLERS, G., Convection under rotation for Prandtl numbers near 1: Linear stability, wavenumber selection and pattern dynamics, Phys. Rev. E, 55, 6928–6949, 1997.CrossRefGoogle Scholar
  11. [11]
    MlLLàN-RODRIGUEZ, J., BESTEHORN, M., PéREZ-GARCiA, C., FRIEDRICH, R., AND NEUFELD, M., Defect motion in rotating fluids, Phys. Rev. Lett., 74, 530–533, 1995.CrossRefGoogle Scholar
  12. [12]
    PESCH, W., Complex spatio-temporal convection patterns, CHAOS, 6, 348–357, 1996.CrossRefGoogle Scholar
  13. [13]
    AUER, M., BUSSE, F.H., AND CLEVER, R.M., Three-dimensional convection driven by centrifugal buoyancy, J. Fluid Mech., 301, 371–382, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    JALETZKY, M., AND BUSSE, F.H., New Pattern of Convection Driven by Centrifugal Buoyancy, ZAMM, to be published, 1998.Google Scholar
  15. [15]
    BUSSE, F.H., Thermal instabilities in rapidly rotating systems, J. Fluid Mech., 44, 441–460, 1970.zbMATHCrossRefGoogle Scholar
  16. [16]
    SCHLüTER, A., LORTZ, D., AND BUSSE, F., On the stability of steady finite amplitude convection, J. Fluid Mech., 23, 129–144, 1965.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    CLEVER, R.M., AND BUSSE, F.H., Steady and Oscillatory Bimodal Convection, J. Fluid Mech., 271, 103–118, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    CLEVER, R.M., AND BUSSE, F.H., Standing and Oscillatory Blob Convection, J. Fluid Mech., 297, 255–273, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [19]
    SCHMITT, B.J., AND WAHL, W. Von, Decomposition of Solenoidal Fields into Poloidal Fields, Toroidal Fields and the Mean Flow, Applications to the Boussinesq-Equations, pp. 291–305 in “The Navier-Stokes Equations II — Theory and Numerical Methods”. J.G. Heywood, K. Masuda, R. Rautmann, S.A. Solonnikov, eds., Springer Lecture Notes in Mathematics 1530, 1992.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • F.H. Busse
    • 1
  • R.M. Clever
    • 2
  1. 1.Institute of PhysicsUniversity of BayreuthBayreuthGermany
  2. 2.Institute of Geophysics and Planetary PhysicsUCLALos AngelesUSA

Personalised recommendations