Advertisement

Dynamics Of Kinks And Vortices In Josephson-Junction Arrays

  • H.S.J. Van Der Zant
  • Shinya Watanabe
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)

Abstract

We present an experimental as well as theoretical study of kink motion in one-dimensional arrays of Josephson junctions connected in parallel by superconducting wires. The boundaries are closed to form a ring, and the waveform and stability of an isolated circulating kink is discussed. Two one-dimensional rings can be coupled which provides an interesting and clean platform to study interactions between kinks. These studies form foundations for investigating the more difficult two-dimensional arrays in which vortices move along rows but with some inter-row coupling. We introduce recent progress in the analysis of vortex dynamics in 2D arrays.

Key words

Josephson junction kink vortex patterns experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D.G. ARONSON, M. GOLUBITSKY, AND M. KRUPA, Coupled arrays of Josephson junctions and bifurcation of maps with SN symmetry, Nonlinearity, 4 (1991), pp. 861–902.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    D.G. ARONSON, M. GOLUBITSKY, AND J. MALLET-PARET, Ponies on a merry-go-round in large arrays of Josephson junctions, Nonlinearity, 4 (1991), pp. 903–910.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [3]
    D.G. ARONSON AND Y.S. HUANG, Single wave-form solutions for general arrays of Josephson junctions, Physica, 101D (1997), pp. 157–177.MathSciNetGoogle Scholar
  4. [4]
    D.G. ARONSON, M. KRUPA, AND P. ASHWIN, Semirotors in the Josephson junction equations, J. Nonlin. Sci., 6 (1996), pp. 85–103.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [5]
    M. BARAHONA, Nonlinear dynamics of two-dimensional Josephson junction arrays, Ph.D. Thesis, MIT (1996).Google Scholar
  6. [6]
    M. BARAHONA, E. TRíAS, T.P. ORLANDO, A.E. DUWEL, H.S.J. VAN DER ZANT, S. WATANABE, AND S.H. STROGATZ, Resonances of dynamical checkerboard states in Josephson arrays with self-inductance, Phys. Rev. B, 55 (1997), pp. R11989–R11992.CrossRefGoogle Scholar
  7. [7]
    M. BARAHONA AND S. WATANABE, Row-switched states in two-dimensional under-damped Josephson junction arrays, Phys. Rev. B, 57 (1998), pp. 10893–10912.CrossRefGoogle Scholar
  8. [8]
    R.D. BOCK, J.R. PHILLIPS, H.S.J. VAN DER ZANT, AND T.P. ORLANDO, Influence of induced magnetic fields on the static and dynamic properties of one-dimensional parallel Josephson-junction arrays, Phys. Rev. B, 49 (1994), pp. 10009–10012.CrossRefGoogle Scholar
  9. [9]
    P.C. BRESSLOFF AND S. COOMBES, Symmetry and phase-locking in a ring of pulse-coupled oscillators with distributed delays, Physica D, in press (1998), and references therein.Google Scholar
  10. [10]
    P. CAPUTO, N. IOSAD, A.V. USTINOV, AND H. KOHLSTEDT, Observation of high voltage resonances in one-dimensional arrays, J. Low Temp. Phys., 106 (1997), p. 353.CrossRefGoogle Scholar
  11. [11]
    G. COSTABILE, S. PAGANO, AND R.D. PARMENTIER, Stability of the McCumber curve for long Josephson tunnel junctions, Phys. Rev. B, 36 (1987), pp. 5225–5229.CrossRefGoogle Scholar
  12. [12]
    J.F. CURRIE, S.E. TRULLINGER, A.R. BISHOP, AND J.A. KRUMHANSL, Numerical simulation of sine-Gordon soliton dynamics in the presence of perturbations, Phys. Rev. B, 15 (1977), pp. 5567–5579.CrossRefGoogle Scholar
  13. [13]
    C. DENNISTON AND C. TANG, Phases of Josephson junction ladders, Phys. Rev. Lett., 75 (1995), pp. 3930–3933.CrossRefGoogle Scholar
  14. [14]
    J. DERWENT AND M. SILBER, private communications.Google Scholar
  15. [15]
    E.J. DOEDEL, D.G. ARONSON, AND H.G. OTHMER, The dynamics of coupled current-biased Josephson junctions: Part I, IEEE Trans. Circ. Sys., 35 (1988), pp. 810–817; D.G. ARONSON, E.J. DOEDEL, AND H.G. OTHMER, The dynamics of coupled current-biased Josephson junctions: Part II, Int. J. Bif. Chaos, 1 (1991), pp. 51-66.MathSciNetCrossRefGoogle Scholar
  16. [16]
    E. DOEDEL AND J.P. KERNéVEZ, AUTO: software for continuation and bifurcation problems in ordinary differential equations, Caltech Tech. Rep. (1986).Google Scholar
  17. [17]
    D. DOMíNGUEZ AND J.V. JOSé, Magnetic and transport dc properties of inductive Josephson-junction arrays, Phys. Rev. B, 53 (1996), pp. 11692–11713.CrossRefGoogle Scholar
  18. [18]
    D.B. DUNCAN, J.C. EILBECK, H. FEDDERSEN, AND J.A.D. WATTIS, Solitons on lattices, Physica, 68D (1993), pp. 1–11.Google Scholar
  19. [19]
    A.E. DUWEL, E. TRíAS, T.P. ORLANDO, H.S.J. VAN DER ZANT, S. WATANABE, AND S.H. STROGATZ, Resonance splitting in discrete planar arrays of Josephson junctions, J. Appl. Phys., 79 (1996), pp. 7864–7870.CrossRefGoogle Scholar
  20. [20]
    A.E. DUWEL, C.P. HEU, J.C. WEISENFELD, M.K.S. YEUNG, E. TRíAS, S.J.K. VáRDY, H.S.J. VAN DER ZANT, S.H. STROGATZ, AND T.P. ORLANDO, Interaction of topological kinks in two coupled rings of nonlinear oscillators, Phys Rev. B, 58 (1998), pp. 8749–8754.CrossRefGoogle Scholar
  21. [21]
    A.E. DUWEL, S. WATANABE, E. TRíAS, T.P. ORLANDO, H.S.J. VAN DER ZANT, AND S.H. STROGATZ, Discreteness-induced resonances and ac voltage amplitudes in long one-dimensional Josephson junctions, J. Appl. Phys., 82 (1997), pp. 4661–4668.CrossRefGoogle Scholar
  22. [22]
    R.E. ECK, D.J. SCALAPINO, AND B.N. TAYLOR, Self-detection of the ac Josephson current, Phys. Rev. Lett., 13 (1964), pp. 15–18.CrossRefGoogle Scholar
  23. [23]
    L.M. FLORíA, J.L. MARIN, P.J. MARTINEZ, F. FALO, AND S. AUBRY, Intrinsic localization in the dynamics of a Josephson-junction ladder, Europhys. Lett., 36 (1996), pp. 539–544.CrossRefGoogle Scholar
  24. [24]
    P. HADLEY, M.R. BEASLEY, AND K. WIESENFELD, Phase locking of Josephson-junction series arrays, Phys. Rev. B, 38 (1988), pp. 8712–8719.CrossRefGoogle Scholar
  25. [25]
    A.K. JAIN, K.K. LIKHAREV, J.E. LUKENS, AND J.E. SAUVAGEAU, Mutual phase-locking in Josephson junction arrays, Phys. Rep., 109 (1984), pp. 309–426.CrossRefGoogle Scholar
  26. [26]
    M. KARDAR, Josephs on-junction ladders and quantum fluctuations, Phys. Rev. B, 33 (1986), pp. 3125–3128.CrossRefGoogle Scholar
  27. [27]
    R. KLEINER, F. STEINMEYER, G. KUNKEL, AND P. MüLLER, Intrinsic Joseph-son effects in Bi 2 Sr 2 CaCu 2 O 8 single crystals, Phys. Rev. Lett., 68 (1992), pp. 2394–2397.CrossRefGoogle Scholar
  28. [28]
    Y. KURAMOTO, Chemical oscillations, waves, and turbulence, Springer, Berlin (1984).zbMATHCrossRefGoogle Scholar
  29. [29]
    M. LEVI, Caterpillar solutions in coupled pendula, Erg. Theo. Dyn. Sys., 8 (1988), pp. 153–174.zbMATHCrossRefGoogle Scholar
  30. [30]
    K. MAGINU, Spatially homogeneous and inhomogeneous oscillations and chaotic motion in the active Josephson junction line, SIAM J. Appl. Math., 43 (1983), pp. 225–243.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    J.J. MAZO, F. FALO, AND L.M. FLORíA, JOSEPHSON JUNCTION LADDERS: GROUND STATE AND RELAXATION PHENOMENA, Pys. Rev. B, 52 (1995), pp. 10433–10440.CrossRefGoogle Scholar
  32. [32]
    D.W. MCLAUGHLIN AND A.C. SCOTT, Perturbation analysis of fluxon dynamics, Phys. Rev. A, 18 (1978), pp. 1652–1680.CrossRefGoogle Scholar
  33. [33]
    T.P. ORLANDO AND K.A. DELIN, Foundations of Applied Superconductivity, Addison-Wesley, Reading, MA (1991).Google Scholar
  34. [34]
    A. PETRAGLIA, N.F. PEDERSEN, P.L. CHRISTIANSEN, AND A.V. USTINOV, Comparative dynamics of 2D shorted arrays and continuous stacked Josephson junctions, Phys. Rev. B, 55 (1997), pp. 8490–8496.CrossRefGoogle Scholar
  35. [35]
    M. PEYRARD AND M.D. KRUSKAL, Kink dynamics in the highly discrete sine-Gordon system, Physica, 14D (1984), pp. 88–102.MathSciNetGoogle Scholar
  36. [36]
    J.R. PHILLIPS, H.S.J. VAN DER ZANT, J. WHITE, AND T.P. ORLANDO, Influence of induced magnetic fields on the static properties of Josephson-junction arrays, Phys. Rev. B, 47 (1993), pp. 5219–5229.CrossRefGoogle Scholar
  37. [37]
    J.R. PHILLIPS, H.S.J. VAN DER ZANT AND T.P. ORLANDO, Dynamics of row-switched states in Josephson-junction arrays, Phys. Rev. B, 50 (1994), pp. 9380–9386.CrossRefGoogle Scholar
  38. [38]
    M. SATO, M. UWAHA, AND Y. SAITO, Control of chaotic wandering of an isolated step by the drift of adatoms, Phys. Rev. Lett., 80 (1998), pp. 4233–4236.CrossRefGoogle Scholar
  39. [39]
    T. STRUNZ AND F.-J. ELMER, Driven Frenkel-Kontrova model: I. Uniform sliding states and dynamical domains of different particle densities, Phys. Rev. E, 58 (1998), pp. 1601–1611; Driven Frenkel-Kontrova model: II. Chaotic sliding and nonequilibrium melting and freezing, ibid., pp. 1612-1620.CrossRefGoogle Scholar
  40. [40]
    J.W. SWIFT, S.H. STROGATZ, AND K. WIESENFELD, Averaging of globally coupled oscillators, Physica, 55D (1992), pp. 239–250; K. WIESENFELD AND J.W. SWIFT, Averaged equations for Josephson junction series arrays, Phys. Rev. E, 51 (1995), pp. 1020-1025.Google Scholar
  41. [41]
    M. TINKHAM, Introduction to Superconductivity, McGraw-Hill, NY (1996), Sec. 6.6.Google Scholar
  42. [42]
    E. TRíAS, A.E. DUWEL, T.P. ORLANDO, AND S. WATANABE, Circuit models for arrays of Josephson oscillators with loads, to appear in Proc. Appl. Supercond. Conf. (1998).Google Scholar
  43. [43]
    E. TRíAS, T.P. ORLANDO, AND H.S.J. VAN DER ZANT, Self-field effects on flux flow in two-dimensional arrays of Nb Josephson junctions, Phys. Rev. B, 54 (1996), pp. 6568–6575.CrossRefGoogle Scholar
  44. [44]
    A.V. USTINOV, T. DODERER, B. MAYER, R.P. HUEBENER, AND V.A. OBOZNOV, Trapping of several solitons in annular Josephson junctions, Europhys. Lett., 19 (1992), pp. 63–68.CrossRefGoogle Scholar
  45. [45]
    A.V. USTINOV, M. CIRILLO AND B.A. MALOMED, Fluxon dynamics in one-dimensional Josephs on-junction arrays, Phys. Rev. B, 47 (1993), pp. 8357–8360.CrossRefGoogle Scholar
  46. [46]
    H.S.J. VAN DER ZANT, T.P. ORLANDO, S. WATANABE, AND S.H. STROGATZ, Kink propagation in a highly discrete system: observation of phase locking to linear waves, Phys. Rev. Lett., 74 (1995), pp. 174–177.CrossRefGoogle Scholar
  47. [47]
    H.S.J. VAN DER ZANT, C.J. MüLLER, L.J. GEERLIGS, C.J.P.M. HARMANS, AND J.E. Mooij, Coherent phase slip in arrays of underdamped Josephson tunnel junctions, Phys. Rev. B, 38 (1988), pp. 5154–5157.CrossRefGoogle Scholar
  48. [48]
    H.S.J. VAN DER ZANT, D. BERMAN, T.P. ORLANDO, AND K.A. DELIN, Fiske modes in one-dimensional parallel Josephson-junction arrays, Phys. Rev. B, 49 (1994), pp. 12945–12952.CrossRefGoogle Scholar
  49. [49]
    H.S.J. VAN DER ZANT AND T.P. ORLANDO, Eck peak in underdamped discrete superconducting vortex flow devices, J. Appl. Phys., 76 (1994), pp. 7606–7612.CrossRefGoogle Scholar
  50. [50]
    S. WATANABE, S.H. STROGATZ, H.S.J. VAN DER ZANT, AND T.P. ORLANDO, Whirling modes and parametric instabilities in the discrete sine-Gordon equation: experimental tests in Josephson rings, Phys. Rev. Lett., 74 (1995), pp. 379–382.CrossRefGoogle Scholar
  51. [51]
    S. WATANABE, H.S.J. VAN DER ZANT, S.H. STROGATZ, AND T.P. ORLANDO, Dynamics of circular arrays of Josephson junctions and the discrete sine-Gordon equation, Physica, 97D (1996), pp. 429–470.Google Scholar
  52. [52]
    S. WATANABE AND S.H. STROGATZ, Constants of motion in superconducting Josephson arrays, Physica, 74D (1994), pp. 197–253.Google Scholar
  53. [53]
    K. WIESENFELD, in this IMA Proceedings.Google Scholar
  54. [54]
    K. WIESENFELD, S.P. BENZ, AND P.A.A. Booi, Phase-locked oscillator optimization for arrays of Josephson junctions, J. Appl. Phys., 76 (1994), pp. 3835–3846.CrossRefGoogle Scholar
  55. [55]
    K. WISENFELD, P. COLET, AND S.H. STROGATZ, Synchronization transitions in a disordered Josephson series array, Phys. Rev. Lett., 76 (1996), pp. 404–407.CrossRefGoogle Scholar
  56. [56]
    Z. ZHENG, B. HU, AND G. HU, Spatiotemporal dynamics of discrete sine-Gordon lattices with sinusoidal couplings, Phys. Rev. E, 57 (1998), pp. 1139–1144.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • H.S.J. Van Der Zant
    • 1
  • Shinya Watanabe
    • 2
  1. 1.Dept. of Applied Physics and DIMESDelft University of TechnologyDelftThe Netherlands
  2. 2.Dept. of Mathematical SciencesIbaraki UniversityMitoJapan

Personalised recommendations