Chaotic Intermittency of Patterns in Symmetric Systems

  • Peter Ashwin
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)


We examine some properties of attractors for symmetric dynamical systems that show what we refer to as ‘chaotic intermittency’. These are attractors that contain points with several different symmetry types, with the consequence that attracted trajectories come arbitrarily close to possessing a variety of different symmetries. Such attractors include heteroclinic attractors, on-off and in-out intermittency and cycling chaos. We indicate how they can be created at bifurcation, some open problems and further reading.


Lyapunov Exponent Invariant Subspace Invariant Manifold Chaotic Attractor Symmetric System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. ALEXANDER, I. KAN, J. YORKE AND Z. YOU, Riddled Basins, Int. J. Bif. Chaos, 2, 795–813, (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    L. ARNOLD AND NGUYEN DINH CONG, Generic properties of Lyapunov exponents, Rand. Comp. Dyn., 2, 335–345, (1994).zbMATHGoogle Scholar
  3. [3]
    V.I. ARNOLD, (Editor), Encyclopaedia of Mathematical Sciences, Dynamical Systems, 5, Springer-Verlag, (1994).Google Scholar
  4. [4]
    P. ASHWIN, Attractors stuck on to invariant subspaces, Phys. Lett. A, 209, 338–344, (1995).CrossRefGoogle Scholar
  5. [5]
    P. ASHWIN, Cycles homoclinic to chaotic sets; robustness and resonance, Chaos, 7, 207–220, (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    P. ASHWIN, P.J. ASTON AND M. NICOL, On the unfolding of a blowout bifurcation, Physica D, 111, 81–95, (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    P. ASHWIN AND P.J. ASTON, Blowout bifurcations of codimension two, Physics Letters A, 244, 261–270, (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  8. [8]
    P. ASHWIN, J. BUESCU AND I. STEWART, Bubbling of attractors and synchronisation of oscillators, Phys. Lett. A, 193, 126–139, (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  9. [9]
    P. ASHWIN, J. BUESCU AND I. STEWART, From attractor to chaotic saddle: a tale of transverse instability, Nonlinearity 9 703–737, (1996MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    P. ASHWIN, E. COVAS AND R.K. TAVAKOL, Transverse instability for non-normal parameters, Technical Report, 3, Dept of Maths and Stats, University of Surrey, (1998).Google Scholar
  11. [11]
    P. ASHWIN AND I. MELBOURNE, Symmetry groups of attractors, Arch. Rat. Mech. Anal., 126, 59–78, (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    P. ASHWIN AND M. NICOL, Detecting symmetries from observations, Part I: Theory, Physica D, 100, 58–70, (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    P. ASHWIN AND A.M. RUCKLIDGE, Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection, Physica D, 122, 134–154, (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    P. ASHWIN AND J. TOMES, Detecting symmetries from observations, Part II: An experiment with S 4 symmetry, Physica D, 100, 71–84, (1997)Google Scholar
  15. [15]
    P.J. ASTON AND M. DELLNITZ, Symmetry breaking bifurcation of chaotic attractors, Int. J. Bif. Chaos, 5, 1643–1676, (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    E. BARANY, M. DELLNITZ AND M. GOLUBITSKY, Detecting the symmetry of attractors, Physica D, 67, 66–87, (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    E. BARRETO, B. HUNT, C. GREBOGI AND J. YORKE, From high dimensional chaos to stable periodic orbits: the structure of parameter space, Phys. Rev. Lett., 78, 4561–4564, (1997).CrossRefGoogle Scholar
  18. [18]
    J.M. BROOKE, Breaking of equatorial symmetry in a rotating system: a spiralling intermittency mechanism, Europhysics Letters, 37, 171–176, (1997).CrossRefGoogle Scholar
  19. [19]
    F. M. BUSSE AND R.M. CLEVER, Nonstationary convection in a rotating system, In: U. Müller, K. Roessner and B. Schmidt (Eds), Recent development in theoretical and experimental fluid dynamics, Springer-Verlag, Berlin, 376–385, (1979).CrossRefGoogle Scholar
  20. [20]
    P. CHOSSAT AND M. GOLUBITSKY, Symmetry increasing bifurcation of chaotic attractors, Physica D, 32, 423–436, (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    E. COVAS, P. ASHWIN AND R.K. TAVAKOL, Non-normal parameter blowout bifurcation in a truncated mean fleld dynamo, Phys. Rev. E, 56, 6451–6458, (1997).MathSciNetCrossRefGoogle Scholar
  22. [22]
    M. DELLNITZ, M. GOLUBITSKY AND M. NICOL, Symmetry of attractors and the Karhunen-Loéve decomposition, In: Trends and Perspectives in Applied Mathematics, (L. Sirovich, Ed.), Appl. Math. Sci., 100, Springer-Verlag, 73–108, (1994).Google Scholar
  23. [23]
    M. DELLNITZ, M. FIELD, M. GOLUBITSKY, A. HOHMANN AND J. MA., Cycling chaos, IEEE Trans. Circuits and Systems-I, 42, 821–823, (1995).CrossRefGoogle Scholar
  24. [24]
    M. FIELD, Lectures on Dynamics, Bifurcation and symmetry, Pitman Research Notes in Mathematics, 356, Pitman, (1996).Google Scholar
  25. [25]
    B.J. GLUCKMAN, P. MARCQ, J. BRIDGER AND J.P. GOLLUB, Time-averaging of chaotic spatio-temporal wave patterns, Phys. Rev. Lett., 71, 2034–2037, (1993).CrossRefGoogle Scholar
  26. [26]
    M. GOLUBITSKY AND M. NICOL, Symmetry detectives for SBR attractors, Nonlinearity, 8, 1027–1038, (1995).MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    M. GOLUBITSKY, AND D.G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol 1, Springer Applied Math. Sci., vol 51, (1985).Google Scholar
  28. [28]
    M. GOLUBITSKY, I. STEWART AND D.G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol 2, Springer Applied Math. Sci., vol 69, (1988).Google Scholar
  29. [29]
    J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Applied Mathematical Sciences, 42, Springer Verlag, (1983).Google Scholar
  30. [30]
    J. GUCKENHEIMER AND P. HOLMES, Structurally stable heteroclinic cycles, Math. Proc. Camb. Phil. Soc., 103, 189–192, (1988).MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    A. HASEGAWA, M. KOMURO AND T. ENDO, A new type of intermittency from a ring of four coupled phase-locked loops, Proceedings of ECCTD’97, Budapest, Sept., 1997, sponsored by the European Circuit Society.Google Scholar
  32. [32]
    J.F. HEAGY, N. PLATT AND S.M. HAMMEL, Characterization of on-off intermittency, Phys. Rev. E, 49, 1140–1150, 1994.CrossRefGoogle Scholar
  33. [33]
    K. KANEKO, Mean fleld fluctuation of a network of chaotic elements, Physica D, 55, 368–384, (1992).zbMATHCrossRefGoogle Scholar
  34. [34]
    I.G. KEVREKEDIS, B. NICOLAENKO AND J.C. SCOVEL, Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50, 760–790, (1990).MathSciNetCrossRefGoogle Scholar
  35. [35]
    M. KRUPA AND I. MELBOURNE, Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic, Thoer. Dynam. Syst., 15, 121–147, (1995).MathSciNetzbMATHGoogle Scholar
  36. [36]
    M. KRUPA, Robust heteroclinic cycles, Journal of Nonlinear Science, 7, 129–176, (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    Y.C. LAI, C. GREBOGI, J.A. YORKE AND S.C. VENKATARAMANI, Riddling bifurcation in chaotic dynamical systems, Phys. Rev. Lett., 77, 55–58, (1996).CrossRefGoogle Scholar
  38. [38]
    Yu. L. MAISTRENKO, V.L. MAISTRENKO, A. POPOVICH AND E. MOSEKILDE, Role of the absorbing area in chaotic synchronization, Phys. Rev. Lett., 80,1638–1641, (1998).CrossRefGoogle Scholar
  39. [39]
    I. MELBOURNE, M. DELLNITZ AND M. GOLUBITSKY, The Structure of Symmetric Attractors, Arch. Rational. Mech. Anal., 123, 75–98, 1993.MathSciNetzbMATHCrossRefGoogle Scholar
  40. [40]
    J. MILNOR, On the concept of attractor, Commun. Math. Phys., 99, 177–195 (1985); Comments Commun. Math. Phys., 102, 517-519, (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    E. OTT, J.C. SOMMERER, J. ALEXANDER, I. KAN AND J.A. YORKE, Scaling behaviour of chaotic systems with riddled basins, Phys. Rev. Lett., 71, 4134–4137, (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    E. OTT, J.C. SOMMERER, J. ALEXANDER, I. KAN AND J.A. YORKE, A transition to chaotic attractors with riddled basins, Physica D, 76, 384–410, (1994).MathSciNetzbMATHCrossRefGoogle Scholar
  43. [43]
    E. OTT AND J.C. SOMMERER, Blowout bifurcations: the occurrence of riddled basins and on-off intermittency, Phys. Lett. A, 188, 39–47, (1994).CrossRefGoogle Scholar
  44. [44]
    A.S. PIKOVSKY, On the interaction of strange attractors, Z. Phys. B, 55, 149–154, (1984).MathSciNetCrossRefGoogle Scholar
  45. [45]
    A.S. PIKOVSKY AND P. GRASSBERGER, Symmetry breaking of coupled chaotic attractors, J. Phys. A, 24, 4587–4597, 1991.MathSciNetCrossRefGoogle Scholar
  46. [46]
    M. PLATT, E. SPIEGEL AND C. TRESSER, On-off intermittency; a mechanism for bursting, Phys. Rev. Lett., 70, 279–282, (1993).CrossRefGoogle Scholar
  47. [47]
    R.J. SACKER AND G.R. SELL, The spectrum of an invariant submanifold, J. Diff. Equations, 38, 135–160, (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    V. TCHISTIAKOV, Detecting symmetry breaking bifurcations in the system describing the dynamics of coupled arrays of Josephson junctions, Physica D, 91, 67–85, (1996).MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    H. YAMADA AND T. FUJISAKA, Stability theory of synchronised motion in coupled-oscillator systems, Prog. Theor. Phys., 70, 1240–1248, (1984).MathSciNetCrossRefGoogle Scholar
  50. [50]
    S.C. VENKATARAMANI, B. HUNT, E. OTT, D.J. GAUTHIER AND J.C. BIENFANG, Transitions to bubbling of chaotic systems, Phys. Rev. Lett., 77, 5361–5364, (1996).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Peter Ashwin
    • 1
  1. 1.Department of Mathematics and StatisticsUniversity of SurreyGuildfordUK

Personalised recommendations