Skip to main content

Chaotic Intermittency of Patterns in Symmetric Systems

  • Chapter

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 115))

Abstract

We examine some properties of attractors for symmetric dynamical systems that show what we refer to as ‘chaotic intermittency’. These are attractors that contain points with several different symmetry types, with the consequence that attracted trajectories come arbitrarily close to possessing a variety of different symmetries. Such attractors include heteroclinic attractors, on-off and in-out intermittency and cycling chaos. We indicate how they can be created at bifurcation, some open problems and further reading.

*

Submitted to proceedings of IMA Workshop on pattern formation in coupled and continuous systems, May 1998.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. ALEXANDER, I. KAN, J. YORKE AND Z. YOU, Riddled Basins, Int. J. Bif. Chaos, 2, 795–813, (1992).

    Article  MathSciNet  MATH  Google Scholar 

  2. L. ARNOLD AND NGUYEN DINH CONG, Generic properties of Lyapunov exponents, Rand. Comp. Dyn., 2, 335–345, (1994).

    MATH  Google Scholar 

  3. V.I. ARNOLD, (Editor), Encyclopaedia of Mathematical Sciences, Dynamical Systems, 5, Springer-Verlag, (1994).

    Google Scholar 

  4. P. ASHWIN, Attractors stuck on to invariant subspaces, Phys. Lett. A, 209, 338–344, (1995).

    Article  Google Scholar 

  5. P. ASHWIN, Cycles homoclinic to chaotic sets; robustness and resonance, Chaos, 7, 207–220, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  6. P. ASHWIN, P.J. ASTON AND M. NICOL, On the unfolding of a blowout bifurcation, Physica D, 111, 81–95, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  7. P. ASHWIN AND P.J. ASTON, Blowout bifurcations of codimension two, Physics Letters A, 244, 261–270, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  8. P. ASHWIN, J. BUESCU AND I. STEWART, Bubbling of attractors and synchronisation of oscillators, Phys. Lett. A, 193, 126–139, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  9. P. ASHWIN, J. BUESCU AND I. STEWART, From attractor to chaotic saddle: a tale of transverse instability, Nonlinearity 9 703–737, (1996

    Article  MathSciNet  MATH  Google Scholar 

  10. P. ASHWIN, E. COVAS AND R.K. TAVAKOL, Transverse instability for non-normal parameters, Technical Report, 3, Dept of Maths and Stats, University of Surrey, (1998).

    Google Scholar 

  11. P. ASHWIN AND I. MELBOURNE, Symmetry groups of attractors, Arch. Rat. Mech. Anal., 126, 59–78, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  12. P. ASHWIN AND M. NICOL, Detecting symmetries from observations, Part I: Theory, Physica D, 100, 58–70, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  13. P. ASHWIN AND A.M. RUCKLIDGE, Cycling chaos: its creation, persistence and loss of stability in a model of nonlinear magnetoconvection, Physica D, 122, 134–154, (1998).

    Article  MathSciNet  MATH  Google Scholar 

  14. P. ASHWIN AND J. TOMES, Detecting symmetries from observations, Part II: An experiment with S 4 symmetry, Physica D, 100, 71–84, (1997)

    Google Scholar 

  15. P.J. ASTON AND M. DELLNITZ, Symmetry breaking bifurcation of chaotic attractors, Int. J. Bif. Chaos, 5, 1643–1676, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  16. E. BARANY, M. DELLNITZ AND M. GOLUBITSKY, Detecting the symmetry of attractors, Physica D, 67, 66–87, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  17. E. BARRETO, B. HUNT, C. GREBOGI AND J. YORKE, From high dimensional chaos to stable periodic orbits: the structure of parameter space, Phys. Rev. Lett., 78, 4561–4564, (1997).

    Article  Google Scholar 

  18. J.M. BROOKE, Breaking of equatorial symmetry in a rotating system: a spiralling intermittency mechanism, Europhysics Letters, 37, 171–176, (1997).

    Article  Google Scholar 

  19. F. M. BUSSE AND R.M. CLEVER, Nonstationary convection in a rotating system, In: U. Müller, K. Roessner and B. Schmidt (Eds), Recent development in theoretical and experimental fluid dynamics, Springer-Verlag, Berlin, 376–385, (1979).

    Chapter  Google Scholar 

  20. P. CHOSSAT AND M. GOLUBITSKY, Symmetry increasing bifurcation of chaotic attractors, Physica D, 32, 423–436, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  21. E. COVAS, P. ASHWIN AND R.K. TAVAKOL, Non-normal parameter blowout bifurcation in a truncated mean fleld dynamo, Phys. Rev. E, 56, 6451–6458, (1997).

    Article  MathSciNet  Google Scholar 

  22. M. DELLNITZ, M. GOLUBITSKY AND M. NICOL, Symmetry of attractors and the Karhunen-Loéve decomposition, In: Trends and Perspectives in Applied Mathematics, (L. Sirovich, Ed.), Appl. Math. Sci., 100, Springer-Verlag, 73–108, (1994).

    Google Scholar 

  23. M. DELLNITZ, M. FIELD, M. GOLUBITSKY, A. HOHMANN AND J. MA., Cycling chaos, IEEE Trans. Circuits and Systems-I, 42, 821–823, (1995).

    Article  Google Scholar 

  24. M. FIELD, Lectures on Dynamics, Bifurcation and symmetry, Pitman Research Notes in Mathematics, 356, Pitman, (1996).

    Google Scholar 

  25. B.J. GLUCKMAN, P. MARCQ, J. BRIDGER AND J.P. GOLLUB, Time-averaging of chaotic spatio-temporal wave patterns, Phys. Rev. Lett., 71, 2034–2037, (1993).

    Article  Google Scholar 

  26. M. GOLUBITSKY AND M. NICOL, Symmetry detectives for SBR attractors, Nonlinearity, 8, 1027–1038, (1995).

    Article  MathSciNet  MATH  Google Scholar 

  27. M. GOLUBITSKY, AND D.G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol 1, Springer Applied Math. Sci., vol 51, (1985).

    Google Scholar 

  28. M. GOLUBITSKY, I. STEWART AND D.G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol 2, Springer Applied Math. Sci., vol 69, (1988).

    Google Scholar 

  29. J. GUCKENHEIMER AND P. HOLMES, Nonlinear oscillations, dynamical systems and bifurcations of vector fields, Applied Mathematical Sciences, 42, Springer Verlag, (1983).

    Google Scholar 

  30. J. GUCKENHEIMER AND P. HOLMES, Structurally stable heteroclinic cycles, Math. Proc. Camb. Phil. Soc., 103, 189–192, (1988).

    Article  MathSciNet  MATH  Google Scholar 

  31. A. HASEGAWA, M. KOMURO AND T. ENDO, A new type of intermittency from a ring of four coupled phase-locked loops, Proceedings of ECCTD’97, Budapest, Sept., 1997, sponsored by the European Circuit Society.

    Google Scholar 

  32. J.F. HEAGY, N. PLATT AND S.M. HAMMEL, Characterization of on-off intermittency, Phys. Rev. E, 49, 1140–1150, 1994.

    Article  Google Scholar 

  33. K. KANEKO, Mean fleld fluctuation of a network of chaotic elements, Physica D, 55, 368–384, (1992).

    Article  MATH  Google Scholar 

  34. I.G. KEVREKEDIS, B. NICOLAENKO AND J.C. SCOVEL, Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50, 760–790, (1990).

    Article  MathSciNet  Google Scholar 

  35. M. KRUPA AND I. MELBOURNE, Asymptotic stability of heteroclinic cycles in systems with symmetry, Ergodic, Thoer. Dynam. Syst., 15, 121–147, (1995).

    MathSciNet  MATH  Google Scholar 

  36. M. KRUPA, Robust heteroclinic cycles, Journal of Nonlinear Science, 7, 129–176, (1997).

    Article  MathSciNet  MATH  Google Scholar 

  37. Y.C. LAI, C. GREBOGI, J.A. YORKE AND S.C. VENKATARAMANI, Riddling bifurcation in chaotic dynamical systems, Phys. Rev. Lett., 77, 55–58, (1996).

    Article  Google Scholar 

  38. Yu. L. MAISTRENKO, V.L. MAISTRENKO, A. POPOVICH AND E. MOSEKILDE, Role of the absorbing area in chaotic synchronization, Phys. Rev. Lett., 80,1638–1641, (1998).

    Article  Google Scholar 

  39. I. MELBOURNE, M. DELLNITZ AND M. GOLUBITSKY, The Structure of Symmetric Attractors, Arch. Rational. Mech. Anal., 123, 75–98, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. MILNOR, On the concept of attractor, Commun. Math. Phys., 99, 177–195 (1985); Comments Commun. Math. Phys., 102, 517-519, (1985).

    Article  MathSciNet  MATH  Google Scholar 

  41. E. OTT, J.C. SOMMERER, J. ALEXANDER, I. KAN AND J.A. YORKE, Scaling behaviour of chaotic systems with riddled basins, Phys. Rev. Lett., 71, 4134–4137, (1993).

    Article  MathSciNet  MATH  Google Scholar 

  42. E. OTT, J.C. SOMMERER, J. ALEXANDER, I. KAN AND J.A. YORKE, A transition to chaotic attractors with riddled basins, Physica D, 76, 384–410, (1994).

    Article  MathSciNet  MATH  Google Scholar 

  43. E. OTT AND J.C. SOMMERER, Blowout bifurcations: the occurrence of riddled basins and on-off intermittency, Phys. Lett. A, 188, 39–47, (1994).

    Article  Google Scholar 

  44. A.S. PIKOVSKY, On the interaction of strange attractors, Z. Phys. B, 55, 149–154, (1984).

    Article  MathSciNet  Google Scholar 

  45. A.S. PIKOVSKY AND P. GRASSBERGER, Symmetry breaking of coupled chaotic attractors, J. Phys. A, 24, 4587–4597, 1991.

    Article  MathSciNet  Google Scholar 

  46. M. PLATT, E. SPIEGEL AND C. TRESSER, On-off intermittency; a mechanism for bursting, Phys. Rev. Lett., 70, 279–282, (1993).

    Article  Google Scholar 

  47. R.J. SACKER AND G.R. SELL, The spectrum of an invariant submanifold, J. Diff. Equations, 38, 135–160, (1980).

    Article  MathSciNet  MATH  Google Scholar 

  48. V. TCHISTIAKOV, Detecting symmetry breaking bifurcations in the system describing the dynamics of coupled arrays of Josephson junctions, Physica D, 91, 67–85, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  49. H. YAMADA AND T. FUJISAKA, Stability theory of synchronised motion in coupled-oscillator systems, Prog. Theor. Phys., 70, 1240–1248, (1984).

    Article  MathSciNet  Google Scholar 

  50. S.C. VENKATARAMANI, B. HUNT, E. OTT, D.J. GAUTHIER AND J.C. BIENFANG, Transitions to bubbling of chaotic systems, Phys. Rev. Lett., 77, 5361–5364, (1996).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashwin, P. (1999). Chaotic Intermittency of Patterns in Symmetric Systems. In: Golubitsky, M., Luss, D., Strogatz, S.H. (eds) Pattern Formation in Continuous and Coupled Systems. The IMA Volumes in Mathematics and its Applications, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1558-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1558-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7192-5

  • Online ISBN: 978-1-4612-1558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics