Bifurcation From Periodic Solutions with Spatiotemporal Symmetry

  • Jeroen S. W. Lamb
  • Ian Melbourne
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)


In this paper, we discuss some recent developments in the understanding of generic bifurcation from periodic solutions with spatiotemporal symmetries. We focus mainly on the theory for bifurcation from isolated periodic solutions in dynamical systems with a compact symmetry group. Moreover, we discuss how our theory justifies certain heuristic assumptions underlying previous approaches towards period preserving and period doubling bifurcation from periodic solutions.


Periodic Solution Irreducible Representation Hopf Bifurcation Period Doubling Period Doubling Bifurcation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. BARKLEY AND R. D. HENDERSON, Three dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech., 322, (1996), 215–241.zbMATHCrossRefGoogle Scholar
  2. [2]
    P. L. BUONO, A model of central pattern generators for quadruped locomotion. Ph. D. Thesis, University of Huston, (1998).Google Scholar
  3. [3]
    P. CHOSSAT AND M. GOLUBITSKY, Iterates of maps with symmetry, SIAM J. Math. Anal., 19, (1988), 1259–1270.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    M. VAN DYKE, An album of fluid motion, Parabolic Press, Stanford CA, (1982).Google Scholar
  5. [5]
    B. FIEDLER, Global Bifurcations of Periodic Solutions with Symmetry, Lecture Notes in Math, 1309, Springer, Berlin, (1988).Google Scholar
  6. [6]
    M. J. FIELD, Symmetry breaking for equivariant maps, In: ‘Algebraic Groups and Related Subjects’, (G. Lehrer et al, eds) Australian Math. Soc. Lecture Series, Cambridge Univ. Press, (1996), 219–253.Google Scholar
  7. [7]
    M. GOLUBITSKY, I. STEWART AND D. SCHAEFFER, Singularities and Groups in Bifurcation Theory: Vol. II, Applied Mathematical Sciences, 69, Springer, New York, (1988).Google Scholar
  8. [8]
    J. GUCKENHEIMER AND P. HOLMES, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, (1983).Google Scholar
  9. [9]
    C. P. JACKSON, A finite-element study of the onset of vortex shedding in flow past variously shaped bodies, J. Fluid Mech, 182, (1987), 23–45.zbMATHCrossRefGoogle Scholar
  10. [10]
    M. KRUPA, Bifurcations of relative equilibria, SIAM J. Math. Anal., 21, (1990), 1453–1486.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    J. S. W. LAMB, Local bifurcations in k-symmetric dynamical systems, Nonlinearity, 9, (1996), 537–557.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    J. S. W. LAMB, k-symmetry and return maps of space-time symmetric flows, Nonlinearity, 11, (1998), 601–629.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    J. S. W. LAMB AND I. MELBOURNE, Bifurcation from discrete rotating waves, To appear in Arch. Rat. Mech. Anal.Google Scholar
  14. [14]
    C. WULFF, J. S. W. LAMB AND I. MELBOURNE, Bifurcation from relative periodic solutions, submitted.Google Scholar
  15. [15]
    J. S. W. LAMB AND G. R. W. QUISPEL, Reversing k-symmetries in dynamical systems, Physica D, 73, (1994), 277–304.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    C. MATHIS, M. PROVENSAL AND L. BOYER, Bénard-von Kármán instability: transient and forced regimes, J. Fluid Mech., 182, (1987), 1–22.zbMATHCrossRefGoogle Scholar
  17. [17]
    N. NICOLAISEN AND B. WERNER, Some remarks on period doubling in systems with symmetry, ZAMP, 46, (1995), 566–579.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    E. V. NIKOLAEV, Periodic motions in systems with a finite symmetry group, Preprint, Pushchino, (1994).Google Scholar
  19. [19]
    A. RUCKLIDGE AND M. SILBER, Bifurcations of periodic orbits with spatio-temporal symmetries, Nonlinearity, 11, (1998), 1435–1455MathSciNetzbMATHCrossRefGoogle Scholar
  20. [20]
    D. RUELLE, Bifurcations in the presence of a symmetry group, Arch. Rat. Mech. Anal., 51, (1973), 136–152.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    D. RAND, Dynamics and symmetry. Predictions for modulated waves in rotating fluids, Arch. Rational Mech. & Anal., 79, (1982), 1–38.MathSciNetzbMATHCrossRefGoogle Scholar
  22. [22]
    M. RENARDY, Bifurcation from rotating waves, Arch. Rational Mech. & Anal., 79, (1982), 49–84.MathSciNetzbMATHGoogle Scholar
  23. [23]
    B. SANDSTEDE, A. SCHEEL AND C. WULFF, Dynamics of spiral waves in unbounded domains using center-manifold reductions, J. Diff. Eqns., 141, (1997), 122–149.MathSciNetzbMATHCrossRefGoogle Scholar
  24. [24]
    J. W. SWIFT AND K. WIESENFELD, Suppression of period doubling in symmetric systems, Phys. Rev. Lett., 52, (1984), 705–708.MathSciNetCrossRefGoogle Scholar
  25. [25]
    A. VANDERBAUWHEDE, Period-doublings and orbit-bifurcations in symmetric systems, In Dynamical Systems and Ergodic Theory, Banach Center Publ., 23, (1989), 197–208.MathSciNetGoogle Scholar
  26. [26]
    A. VANDERBAUWHEDE, Equivariant period doubling, In Advanced Topics in the Theory of Dynamical Systems, (G. Fusco et aI, eds.), Notes Rep. Math. Sci. Engrg., 6, (1989), 235–246.Google Scholar
  27. [27]
    C. H. K. WILLIAMSON, Three-dimensional wake transition, J. Fluid Mech., 328, (1996), 345–407.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Jeroen S. W. Lamb
    • 1
  • Ian Melbourne
    • 1
  1. 1.Department of MathematicsUniversity of HoustonHoustonUSA

Personalised recommendations