Bursting Mechanisms for Hydrodynamical Systems

  • E. Knobloch
  • J. Moehlis
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)


Different mechanisms believed to be responsible for the generation of bursts in hydrodynamical systems are reviewed and a new mechanism capable of generating regular or irregular bursts of large dynamic range near threshold is described. The new mechanism is present in the interaction between oscillatory modes of odd and even parity in systems of large but finite aspect ratio, and provides an explanation for the bursting behavior observed in binary fluid convection by Sullivan and Ahlers.


Turbulent Boundary Layer Heteroclinic Cycle HYDRODYNAMICAL System Binary Fluid Turbulent Burst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. MOEHLIS AND E. KNOBLOCH, Forced symmetry breaking as a mechanism for bursting, Phys. Rev. Lett. 80 (1998), pp. 5329–5332.CrossRefGoogle Scholar
  2. [2]
    T. S. SULLIVAN AND G. AHLERS, Nonperiodic time dependence at the onset of convection in a binary liquid mixture, Phys. Rev. A 38 (1988), pp. 3143–3146.CrossRefGoogle Scholar
  3. [3]
    A. S. LANDSBERG AND E. KNOBLOCH, Oscillatory bifurcation with broken translation symmetry, Phys. Rev. E 53 (1996), pp. 3579–3600.MathSciNetCrossRefGoogle Scholar
  4. [4]
    J. D. CRAWFORD AND E. KNOBLOCH, Symmetry and symmetry-breaking bifurcations in fluid mechanics, Ann. Rev. Fluid Mech. 23 (1991), pp. 341–387.MathSciNetCrossRefGoogle Scholar
  5. [5]
    S. K. ROBINSON, Coherent motions in the turbulent boundary layer, Ann. Rev. Fluid Mech. 23 (1991), pp. 601–639.CrossRefGoogle Scholar
  6. [6]
    N. AUBRY, P. HOLMES, J. L. LUMLEY AND E. STONE, The dynamics of coherent structures in the wall region of a turbulent boundary layer, J. Fluid Mech. 192 (1988), pp. 115–173.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    P. HOLMES, J. L. LUMLEY AND G. BERKOOZ, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press, Cambridge (1996).zbMATHCrossRefGoogle Scholar
  8. [8]
    P. J. HOLMES, J. L. LUMLEY, G. BERKOOZ, J. C. MATTINGLY AND R. W. WITTENBERG, Low-dimensional models of coherent structures in turbulence, Phys. Rep. 287 (1997), pp. 337–384.MathSciNetCrossRefGoogle Scholar
  9. [9]
    F. H. BUSSE, Transition to turbulence via the statistical limit cycle route, in Turbulence and Chaotic Phenomena in Fluids (ed. by T. Tatsumi), Elsevier, Amsterdam, 1984, pp. 197–202.Google Scholar
  10. [10]
    D. ARMBRUSTER, J. GUCKENHEIMER AND P. HOLMES, Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry, Physica D 29 (1988), pp. 257–282.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    M. R. E. PROCTOR AND C. A. JONES, The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 2:1 resonance, J. Fluid Mech. 188 (1988), pp. 301–335.MathSciNetzbMATHCrossRefGoogle Scholar
  12. [12]
    I. MELBOURNE, P. CHOSSAT AND M. GOLUBITSKY, Heteroclinic cycles involving periodic solutions in mode interactions with O(2) symmetry, Proc. R. Soc. Edinburgh A 113 (1989), pp. 315–345.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    A. STEINDL AND H. TROGER, Heteroclinic cycles in the three-dimensional postbifurcation motion of O(2)-symmetric fluid conveying tubes, Appl. Math. Comp. 78 (1996), pp. 269–277.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    M. KRUPA, Robust heteroclinic cycles, J. Nonlin. Sci. 7 (1997), pp. 129–176.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [15]
    P. HIRSCHBERG AND E. KNOBLOCH, A robust heteroclinic cycle in an O(2)×Z 2 steady-state mode interaction, Nonlinearity 11 (1998), pp. 89–104.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    A. C. NEWELL, D. A. RAND AND D. RUSSELL, Turbulent dissipation rates and the random occurrence of coherent events, Phys. Lett. A 132 (1988), pp. 112–123.MathSciNetCrossRefGoogle Scholar
  17. [17]
    A.C. NEWELL, D. A. RAND AND D. RUSSELL, Turbulent transport and the random occurrence of coherent events, Physica D 33 (1988), pp. 281–303.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    G. F. CARNEVALE, J. C. MCWILLIAMS, Y. POMEAU, J. B. WEISS AND W. R. YOUNG, Evolution of vortex statistics in two-dimensional turbulence, Phys. Rev. Lett. 66 (1991), pp. 2735–2737.CrossRefGoogle Scholar
  19. [19]
    J. B. WEISS AND J. C. MCWILLIAMS, Temporal scaling behavior of decaying two-dimensional turbulence, Phys. Fluids A 5 (1993), pp. 608–621.zbMATHCrossRefGoogle Scholar
  20. [20]
    E. KAPLAN, E. KUZNETSOV AND V. STEINBERG, Burst and collapse in traveling-wave convection of a binary, Phys. Rev. E 50 (1994), pp. 3712–3722.CrossRefGoogle Scholar
  21. [21]
    C. S. BRETHERTON AND E. A. SPIEGEL, Intermittency through modulational instability, Phys. Lett. A 96 (1983), pp. 152–156.CrossRefGoogle Scholar
  22. [22]
    A. S. MAKARENKO, M. N. MOSKALKOV AND S. P. LEVKOV, On blow-up solutions in turbulence, Phys. Lett. A 235 (1997), pp. 391–397.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    Z. S. SHE, Large-scale dynamics and transition to turbulence in the two-dimensional Kolmogorov flow, in Current Trends in Turbulence Research (ed. H. Branover, M. Mond, and Y. Unger), AIAA, Washington, 1988, pp. 374–396.Google Scholar
  24. [24]
    B. NICOLAENKO AND Z. S. SHE, Symmetry-breaking homoclinic chaos in Kolmogorov flows, in Nonlinear World, Int. Workshop on Nonlinear and Turbulent Processes in Physics, Kiev 1989 (ed. V. G. Bar’yakhtar, V. M. Chernousenko, N. S. Erokhin, A. G. Sitenko, and V. E. Zakharov), World Scientific, Singapore, 1990, pp. 602–618.Google Scholar
  25. [25]
    B. NICOLAENKO AND Z. S. SHE, Coherent structures, homoclinic cycles and vorticity explosions in Navier-Stokes flows, in Topological Fluid Mechanics (ed. H. K. Moffatt), Cambridge University Press, Cambridge, 1990, pp. 265–277.Google Scholar
  26. [26]
    B. NICOLAENKO AND Z. S. SHE, Symmetry-breaking homoclinic chaos and vorticity bursts in periodic Navier-Stokes flows, Eur. J. Mech. B/Fluids 10 (no.2, suppl.) (1991), pp. 67–74.MathSciNetzbMATHGoogle Scholar
  27. [27]
    D. ARMBRUSTER, R. HEILAND, E. J. KOSTELICH AND B. NICOLAENKO, Phase-space analysis of bursting behavior in Kolmogorov now, Physica D 58 (1992), pp. 392–401.MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    B. NICOLAENKO AND Z. S. SHE, Turbulent bursts, inertial sets and symmetry-breaking homoclinic cycles in periodic Navier-Stokes flows, in Turbulence in Fluid Flows: a Dynamical Systems Approach (ed. G. R. Sell, C. Foias, and R. Temam), Springer-Verlag, New York, 1993, pp. 123–136.CrossRefGoogle Scholar
  29. [29]
    D. ARMBRUSTER, B. NICOLAENKO, N. SMAOUI AND P. CHOSSAT, Analyzing bifurcations in the Kolmogorov flow equations, in Dynamics, Bifurcation and Symmetry (ed. P. Chossat), Kluwer, Dordrecht, 1994, pp. 11–34.CrossRefGoogle Scholar
  30. [30]
    D. ARMBRUSTER, B. NICOLAENKO, N. SMAOUI AND P. CHOSSAT, Symmetries and dynamics for 2-D Navier-Stokes flow, Physica D 95 (1996), pp. 81–93.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    L. D. MESHALKIN AND IA. G. SINAI, Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous fluid, J. Appl. Math. Mech. 25 (1961), pp. 1700–1705.MathSciNetzbMATHCrossRefGoogle Scholar
  32. [32]
    J. S. A. GREEN, Two-dimensional turbulence near the viscous limit, J. Fluid Mech. 62 (1974), pp. 273–287.zbMATHCrossRefGoogle Scholar
  33. [33]
    C. MARCHIORO, An example of absence of turbulence for any Reynolds number, Commun. Math. Phys. 105 (1986), pp. 99–106.MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    N. PLATT, L. SIROVICH AND N. FITZMAURICE, An investigation of chaotic Kolmogorov flows, Phys. Fluids A 3 (1991), pp. 681–696.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    H. A. POSCH AND W. G. HOOVER, Simulation of two-dimensional Kolmogorov flow with smooth particle applied mechanics, Physica A 240 (1997), pp. 286–296.CrossRefGoogle Scholar
  36. [36]
    E. KNOBLOCH, Symmetry and instability in rotating hydrodynamic and magneto-hydrodynamic flows, Phys. Fluids 8 (1996), pp. 1446–1454.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    S. XIN, P. LE QUéRé AND L. S. TUCKERMAN, Bifurcation analysis of double-diffusive convection with opposing thermal and solutal gradients, Phys. Fluids 10 (1998) pp. 850–858.CrossRefGoogle Scholar
  38. [38]
    C. F. HAMILL, Turbulent Bursting in the Couette-Taylor System, MA Thesis, Univ. Texas at Austin (1995).Google Scholar
  39. [39]
    K. COUGHLIN AND P. S. MARCUS, Turbulent bursts in Couette-Taylor flow, Phys. Rev. Lett. 77 (1996), pp. 2214–2217.CrossRefGoogle Scholar
  40. [40]
    J. RINZEL, A formal classiflcation of bursting mechanisms in excitable systems, in Proceedings of the International Congress of Mathematicians (ed. A. M. Gleason), American Mathematical Society, 1987, pp. 1578–1594.Google Scholar
  41. [41]
    J. RINZEL, A formal classiflcation of bursting mechanisms in excitable systems, in Mathematical Topics in Population Biology, Morphogenesis and Neurosciences (ed. E. Teramoto and M. Yamaguti), Lecture Notes in Biomathematics Vol. 71, Springer-Verlag, Berlin, 1987, pp. 267–281.CrossRefGoogle Scholar
  42. [42]
    R. BERTRAM, M. J. BUTTE, T. KIEMEL AND A. SHERMAN, Topological and phenomenological classiflcation of bursting oscillations, Bull. Math. Biology 57 (1995), pp. 413–439.zbMATHGoogle Scholar
  43. [43]
    X. J. WANG AND J. RINZEL, Oscillatory and bursting properties of neurons, in The Handbook of Brain Theory and Neural Networks (ed. M. Arbib), MIT Press, Cambridge, 1995, pp. 686–691.Google Scholar
  44. [44]
    J. GucKENHEIMER, R. HARRIS-WARRICK, J. PECK AND A. WiLLMS, Bifurcation, Bursting, and Spike Frequency Adaptation, J. Comp. Neuroscience 4 (1997), pp. 257–277.zbMATHCrossRefGoogle Scholar
  45. [45]
    D. JACQMIN AND J. HEMINGER, Double-diffusion with Soret effect in a rectangular geometry: Linear and nonlinear traveling wave instabilities, preprint (1994).Google Scholar
  46. [46]
    G. DANGELMAYR AND E. KNOBLOCH, On the Hopf bifurcation with broken O(2) symmetry, in The Physics of Structure Formation (ed. W. Güttinger, G. Dangelmayr), Springer-Verlag, New York, 1987, pp. 387–393.CrossRefGoogle Scholar
  47. [47]
    G. DANGELMAYR AND E. KNOBLOCH, Hopf bifurcation with broken circular symmetry, Nonlinearity 4 (1991), pp. 399–427.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    R. LAUTERBACH AND M. ROBERTS, Heteroclinic cycles in dynamical systems with broken spherical symmetry, J. Diff Eq. 100, (1992), pp. 22–48.MathSciNetzbMATHCrossRefGoogle Scholar
  49. [49]
    E. KNOBLOCH, System symmetry breaking and Shi’nikov Dynamics, in Pattern Formation: Symmetry Methods and Applications (ed. J. Chadam, M. Golubitsky, W. Langford, B. Wetton), American Mathematical Society, Providence, 1996, pp. 271–279.Google Scholar
  50. [50]
    P. HIRSCHBERG AND E. KNOBLOCH, Complex dynamics in the Hopf bifurcation with broken translation symmetry, Physica D 92 (1996), pp. 56–78.MathSciNetCrossRefGoogle Scholar
  51. [51]
    J. W. SWIFT, Hopf bifurcation with the symmetry of the square, Nonlinearity 1 (1988), pp. 333–377.MathSciNetzbMATHCrossRefGoogle Scholar
  52. [52]
    E. KNOBLOCH AND J. MOEHLIS, Bursts, to appear in Proc. IUTAM Symp. CHAOS’ 97 (ed. F. C. Moon), Kluwer, Dordrecht.Google Scholar
  53. [53]
    J. MOEHLIS AND E. KNOBLOCH, Bursts in oscillatory systems with broken D 4 symmetry, in preparation.Google Scholar
  54. [54]
    P. KOLODNER, C. M. SURKO AND H. WILLIAMS, Dynamics of traveling waves near the onset of convection in binary fiuid mixtures, Physica D 37 (1989), pp. 319–333.CrossRefGoogle Scholar
  55. [55]
    V. STEINBERG, J. FINEBERG, E. MOSES AND I. REHBERG, Pattern selection and transition to turbulence in propagating waves, Physica D 37 (1989), pp. 359–383.CrossRefGoogle Scholar
  56. [56]
    A.A. PREDTECHENSKY, W. D. MCCORMICK, J. B. SWIFT, A. G. ROSSBERG AND H. L. SWINNEY, Traveling wave instability in sustained double-diffusive convection, Phys. Fluids 6 (1994), pp. 3923–3935.zbMATHCrossRefGoogle Scholar
  57. [57]
    C.D. ANDERECK, S.S. LIU AND H. L. SWINNEY, Flow regimes in a circular Couette system with independently rotating cylinders, J. Fluid Mech. 164 (1986), pp. 155–183.CrossRefGoogle Scholar
  58. [58]
    R. D. PIERCE AND E. KNOBLOCH, Spiral vortices in unite cylinders, in Ordered and Turbulent Patterns in Taylor-Couette Flow (ed. C.D. Andereck and F. Hayot), NATO ASI Series B 297 (1992), pp. 83–90.Google Scholar
  59. [59]
    D. ARMBRUSTER, Codimension 2 bifurcation in binary convection with square symmetry, in Nonlinear Evolution of Spatio-Temporal Structures in Dissipative Continuous Systems (ed. F. H. Busse and L. Kramer), Plenum Press, New York, 1990, pp. 385–398.CrossRefGoogle Scholar
  60. [60]
    D. ARMBRUSTER, Square and almost square symmetry in binary convection, Eur. J. Mech. B/Fluids 10 (no.2, suppl.) (1991), pp. 7–12.MathSciNetzbMATHGoogle Scholar
  61. [61]
    P. ASHWIN AND Z. MEI, Normal form for Hopf bifurcation of partial differential equations on the square, Nonlinearity 8 (1995), pp. 715–734.MathSciNetzbMATHCrossRefGoogle Scholar
  62. [62]
    Q. FENG, J. V. MOLONEY AND A. C NEWELL, Transverse patterns in lasers, Phys. Rev. A 50 (1994), pp. R3601–3604.CrossRefGoogle Scholar
  63. [63]
    A. STEINDL AND H. TROGER, One and two-parameter bifurcations to divergence and flutter in the three-dimensional motions of a fluid conveying viscoelastic tube with D 4 symmetry, Nonlinear Dynam. 8 (1995), pp. 161–178.MathSciNetGoogle Scholar
  64. [64]
    E. KNOBLOCH AND A. S. LANDSBERG, A new model of the solar cycle, Mon. Not. R. Astr. Soc. 278 (1996), pp. 294–302Google Scholar
  65. [65]
    E. KNOBLOCH, S. M. TOBIAS AND N. O. WEISS, Modulation and symmetry changes in stellar dynamos, Mon. Not. R. Astr. Soc. 297 (1998), pp. 1123–1138.CrossRefGoogle Scholar
  66. [66]
    F. SIMONELLI AND J. P. GOLLUB, Surface wave mode interactions: effects of symmetry and degeneracy, J. Fluid Mech. 199 (1989), pp. 471–494.MathSciNetCrossRefGoogle Scholar
  67. [67]
    M. NAGATA, Chaotic behaviour of parametrically excited surface waves in square geometry, Eur. J. Mech. B/Fluids 10 (no.2, suppl.) (1991), pp. 61–66.MathSciNetGoogle Scholar
  68. [68]
    J. D. CRAWFORD, Surface waves in nonsquare containers with square symmetry, Phys. Rev. Lett. 67 (1991), pp. 441–444.CrossRefGoogle Scholar
  69. [69]
    J. D. CRAWFORD, J. P. GOLLUB, AND D. LANE, Hidden symmetries of parametrically forced waves, Nonlinearity 6 (1993), pp. 119–164.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • E. Knobloch
    • 1
  • J. Moehlis
    • 1
  1. 1.Department of PhysicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations