Advertisement

Memory Effects and Complex Patterns in a Catalytic Surface Reaction

  • R. Imbihl
Chapter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)

Abstract

Rate oscillations and spatio-temporal pattern formation in catalytic CO oxidation on a Pt(110) surface are driven by the 1 × 1 ⇄ 1 × 2 phase transition of the Pt surface. The mass transport of Pt atoms associated with this phase transition necessarily generates some roughening of the surface. By using low energy electron microscopy (LEEM) to image the laterally varying adsorbate concentrations it is shown that this reversible roughening is part of the pattern-forming process establishing a memory effect in the oscillatory medium. As a result complex and unusual patterns form under oscillatory conditions. Different types of pattern, each with a characteristic size, coexist such that a hierarchy of length scales is established.

Keywords

Memory Effect Spiral Wave Atomic Step Target Pattern Single Crystal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.M. TURING, Phil.Trans.R. Soc. B, 237, 37, (1952).CrossRefGoogle Scholar
  2. [2]
    J.D. MURRAY, Mathematical Biology, Springer, Berlin, 1990; H. Meinhardt, Models of Biological Pattern Formation, Academic Press, London, 1982.zbMATHGoogle Scholar
  3. [3]
    A.M. ZHABOTINSKII AND A.N. ZAIKIN, Nature 225, 535, (1970).Google Scholar
  4. [4]
    A.T. WINFREE, Science 175, 634, (1972).CrossRefGoogle Scholar
  5. [5]
    Chemical Waves and Patterns, (R. Kapral and K. Showalter, eds.), Kluwer, Dordrecht, 1994.Google Scholar
  6. [6]
    V. CASTETS, E. DULOS, J. BOISSONADE AND P. DE KEPPER, Phys. Rev. Lett. 64, 2953, (1990).CrossRefGoogle Scholar
  7. [7]
    K.-J. LEE, W.D. MCCORMACK, J.E. PEARSON AND H.L. SWINNEY, Nature 369, 215, (1994).CrossRefGoogle Scholar
  8. [8]
    R. IMBIHL AND G. ERTL, Chem. Rev. 95, 697, (1995).CrossRefGoogle Scholar
  9. [9]
    G. ERTL, Science 254, 1756, (1991).CrossRefGoogle Scholar
  10. [10]
    M. EISWIRTH AND G. ERTL, in ref. 5.Google Scholar
  11. [11]
    R. IMBIHL, Prog. Surf. Sci. 44, 185, (1993).CrossRefGoogle Scholar
  12. [12]
    H.H. ROTERMUND, Surf. Sci. Rep. 29, 265, (1997).CrossRefGoogle Scholar
  13. [13]
    F. MERTENS, R. IMBIHL, AND A. MIKHAILOV, J. Chem. Phys. 99, 8668 (1993); F. Mertens, R. Imbihl and A.S. Mikhailov, J. Chem. Phys. 101, 9903, (1994).CrossRefGoogle Scholar
  14. [14]
    M. FLYTZANI-STEPHANOPOULOS, L.D. SCHMIDT, Prog. Surf. Sci. 9, 83, (1979).CrossRefGoogle Scholar
  15. [15]
    M. EISWIRTH AND G. ERTL, Surf. Sci. 177, 90, (1986).CrossRefGoogle Scholar
  16. [16]
    S. LADAS, R. IMBIHL AND G. ERTL, Surf. Sci. 198, 42, (1988).CrossRefGoogle Scholar
  17. [17]
    S. JAKUBITH, H.-H. ROTERMUND, W. ENGEL, A. VON OERTZEN AD G. ERTL, Phys. Rev. Lett. 65, 3013, (1990).CrossRefGoogle Scholar
  18. [18]
    H.H. ROTERMUND, S. JAKUBITH, A. VON OERTZEN, AND G. ERTL, Phys. Rev. Lett. 66, 3083, (1990).CrossRefGoogle Scholar
  19. [19]
    H.H. ROTERMUND, G. HAAS, R.U. FRANZ, R.M. TROMP AND G. ERTL, Science 270, 608, (1995).CrossRefGoogle Scholar
  20. [20]
    K.C. ROSE, D. BATTOGTOKH, A. MIKHAILOV, R. IMBIHL, W. ENGEL AND A.M. BRADSHAW, Phys. Rev. Lett. 76, 3582, (1996).CrossRefGoogle Scholar
  21. [21]
    K.C. ROSE, B. BERTON, R. IMBIHL, W. ENGEL AND A.M. BRADSHAW, Phys. Rev. Lett. 79, 3427, (1997).CrossRefGoogle Scholar
  22. [22]
    S. LADAS, R. IMBIHL, AND G. ERTL, Surf. Sci. 197, 153, (1988).CrossRefGoogle Scholar
  23. [23]
    J. FALTA, R. IMBIHL AND M. HENZLER, Phys. Rev. Lett. 64, 1409, (1990).CrossRefGoogle Scholar
  24. [24]
    M. SANDER AND R. IMBIHL, Surf. Sci. 255, 61, (1991).CrossRefGoogle Scholar
  25. [25]
    R. IMBIHL, Modem Phys. Lett. B 6, 493, (1992).CrossRefGoogle Scholar
  26. [26]
    R. IMBIHL, A.E. REYNOLDS AND D. KALETTA, Phys. Rev. Lett. 67, 275, (1991).CrossRefGoogle Scholar
  27. [27]
    T. GRITSCH, D. COULMAN, R.J. BEHM AND G. ERTL, Phys. Rev. Lett. 63, 1086, (1989).CrossRefGoogle Scholar
  28. [28]
    M. EISWIRTH, P. MöLLER, K. WETZL, R. IMBIHL, AND G. ERTL, J. Chem. Phys. 90, 510, (1989).CrossRefGoogle Scholar
  29. [29]
    M. FALCKE AND H. ENGEL, Phys. Rev. E 50, 1353, (1994).CrossRefGoogle Scholar
  30. [30]
    M. FALCKE AND H. ENGEL, J. Chem. Phys. 101, 6255, (1994).CrossRefGoogle Scholar
  31. [31]
    H. LEVINE AND X. Zou, Phys. Rev. Lett. 69, 204, (1992); Phys. Rev. E 48, 50, (1993).CrossRefGoogle Scholar
  32. [32]
    See ref. 25 for an overview of studies on reaction-induced roughening of Pt single crystal surfaces.Google Scholar
  33. [33]
    M. SANDER, R. IMBIHL, AND G. ERTL, J. Chem. Phys. 95, 6162, (1991).CrossRefGoogle Scholar
  34. [34]
    M. SANDER, R. IMBIHL, AND G. ERTL, J. Chem. Phys. 97, 5193, (1992).CrossRefGoogle Scholar
  35. [35]
    W. TELIEPS AND E. BAUER, Ultramicroscopy 17, 57, (1985).CrossRefGoogle Scholar
  36. [36]
    J. FALTA, R. IMBIHL, M. SANDER, AND M. HENZLER, Phys. Rev. B 45, 6858, (1992).CrossRefGoogle Scholar
  37. [37]
    K. ROSE, doctoral thesis, TU Berlin, 1997Google Scholar
  38. [38]
    K. KRISCHER, M. EISWIRTH, AND G. ERTL, J. Chem. Phys. 96, 9161, (1992).CrossRefGoogle Scholar
  39. [39]
    M. TAMMARO, M. SABELLA AND J.W. EVANS, J. Chem. Phys. 103, 10277, (1995); 108, 762, (1998).CrossRefGoogle Scholar
  40. [40]
    L.M. PISMEN, R. IMBIHL, B.Y. RUBINSTEIN AND M.I. MONIN, Phys. Rev. E., submitted.Google Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • R. Imbihl
    • 1
  1. 1.Institut für Physikalische Chemie und ElektrochemieUniversität HannoverHannoverGermany

Personalised recommendations