Forced Symmetry Breaking: Theory and Applications

  • Frederic Guyard
  • Reiner Lauterbach
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 115)


In this paper we want to present some ideas concerning the behavior of equivariant systems under small perturbations of their symmetry. We will touch these questions, discuss some applications and provide references to the literature. These references include details of the mathematical issues as well as further potential applications.

Key words

Dynamical systems symmetry perturbation symmetry breaking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. ACKEMANN, Spontane Musterbildung in einem atomaren Dampf mit optischer Rückkopplung, PhD thesis, Wetfálische Wilhelms Universität Münster, (1996).Google Scholar
  2. [2]
    D. ARMBRUSTER AND P. CHOSSAT, Heteroclinic cycles in a spherically invariant system, Physica, 50D (1991), pp. 155–176.MathSciNetGoogle Scholar
  3. [3]
    U. BANDELOW, Theorie longitudinaler Effekte in 1.5 μm Mehrsektions-DFB-Laserdioden, PhD thesis, Humboldt Universität, (1994).Google Scholar
  4. [4]
    U. BANDELOW, H. J. WüNSCHE, AND H. WENZEL, Theory of selfpulsation in two-section DFB lasers, IEEE Photonics Technol Lett., 5, (1993), pp. 1176–1179.CrossRefGoogle Scholar
  5. [5]
    D. BARKLEY, Euclidean symmetry and the dynamics of rotating spiral waves, Phys. Rev. Lett., 72, (1994), pp. 164–167.CrossRefGoogle Scholar
  6. [6]
    M. BRACK, P. MEIER, AND K. TANAKA, Uniform tracce formulae for SU(2) and SO(3) symmetry breaking, Preprint, (1998), pp. 1–26.Google Scholar
  7. [7]
    G. E. BREDON, Introduction to Compact Transformation Groups, Academic Press, (1972).Google Scholar
  8. [8]
    S. CHANDRASEKHAR, Hydrodynamic and Hydromagnetic stability, Dover, (1961).Google Scholar
  9. [9]
    D. R. J. CHILLINGWORTH, Bifurcation from an orbit of symmetry, in Singularities and Dynamical Systems, S. Pnevmatikos, ed., North-Holand, (1985).Google Scholar
  10. [10]
    —, Bifurcation from a manifold, in Singularity Theory and Its Applications, Warwick 1989, Part II, M. Roberts and I. Stewart, eds., Springer Verlag, (1991), Lecture Notes in Mathematics 1463.Google Scholar
  11. [11]
    —, The Signorini perturbation scheme in an abstract setting, Proc. Roy. Soc. Edinburgh, 119A, (1991), pp. 373–395.MathSciNetCrossRefGoogle Scholar
  12. [12]
    P. CHOSSAT AND D. ARMBRUSTER, Structurally stable heteroclinic cycles in a system with O (3)-symmetry, in Singularity Theory and Its Applications, Warwick 1989, Part II, M. Roberts and I. Stewart, eds., Springer Verlag, (1991), pp. 38–62, Lecture Notes in Mathematics 1463.Google Scholar
  13. [13]
    P. CHOSSAT AND F. GUYARD, Heteroclinic cycles in bifurcation problems with O (3) symmetry and the spherical Bénard problem, J. Nonl. Sc., 6, (1996), pp. 201–238.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    P. CHOSSAT, F. GUYARD, AND R. LAUTERBACH, Heteroclinic sets in spherically invariant systems and their perturbations, J. Nonl. Sc., to appear, (1998).Google Scholar
  15. [15]
    P. CHOSSAT AND R. LAUTERBACH, Equivariant dynamical systems and applications, World Scientific, in preparation.Google Scholar
  16. [16]
    P. CHOSSAT, R. LAUTERBACH, AND I. MELBOURNE, Steady-state bifurcation with O (3)-symmetry, Arch. Rat. Mech. Anal., 113, (1991), pp. 313–376.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    E. N. DANCER, An implicit function theorem with symmetries and its applications to nonlinear boundary value problems, Bull. Austr.. Math. Soc., 21, (1980), pp. 81–91.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    —, The G-invariant implicit function theorem in infinite dimensions, Proc. Roy. Soc. Edinburgh, 92A, (1982), pp. 13–30.MathSciNetCrossRefGoogle Scholar
  19. [19]
    —, The G-invariant implicit function theorem in infinite dimensions II, Proc. Roy. Soc. Edinburgh, 102A, (1986), pp. 211–220.MathSciNetCrossRefGoogle Scholar
  20. [20]
    G. DANGELMAYR AND E. KNOBLOCH, Hopf bifurcation with broken circular symmetry, Nonlinearity, 4, (1991), pp. 399–428.MathSciNetzbMATHCrossRefGoogle Scholar
  21. [21]
    U. FEISTE, D. J. AS, AND A. ERHARD, 18 ghz all-optical frequency locking and clock recovery using a self-pulsating two section DFB laser, IEEE Photonics Technol. Lett., 6, (1994), pp. 106–108.CrossRefGoogle Scholar
  22. [22]
    B. FIEDLER, B. SANDSTEDE, A. SCHEEL, AND C. WULFF, Bifurcation from relative equilibria of noncompact group actions: skew products, meanders and drifts, Doc. Math. J. DMV, 1, (1996), pp. 479–505.MathSciNetzbMATHGoogle Scholar
  23. [23]
    M. FIELD, Local structure of equivariant dynamics, in Singularity Theory and its Applications, Warwick (1989), Part II, M. Roberts and I. Stewart, eds., Springer Verlag, (1991), Lecture Notes in Mathematics 1463.Google Scholar
  24. [24]
    M. FIELD AND J. W. SWIFT, Stationary bifurcation to limit cycles and heteroclinic cycles, Nonlinearity, 4, (1991), pp. 101–1043.MathSciNetCrossRefGoogle Scholar
  25. [25]
    M. FORGER, J. HORNOS, AND Y. HORNOS, Global aspects in the algebraic approach for the genetic code, Phys. Rev., E 56, (1997), pp. 7078–7082.MathSciNetCrossRefGoogle Scholar
  26. [26]
    R. FRIEDRICH AND H. HAKEN, Static, wavelike, and chaotic thermal convection in spherical geometries, Physical Rev. A, 34, (1986), pp. 2100–2120.CrossRefGoogle Scholar
  27. [27]
    J. FUHRMANN. WWW-page, (1998), Scholar
  28. [28]
    J.-E. FURTER, A. M. SITTA, AND I. STEWART, Singularity theory and equivariant bifurcation problems with parameter symmetry, Math. Proc. Cambridge Phil. Soc., 120, (1996), pp. 547–1578.MathSciNetzbMATHCrossRefGoogle Scholar
  29. [29]
    K. GATERMANN AND F. GUYARD, Gröbner bases, invariant theory and equivariant dynamics, Preprint ZIB, SC 96-37, (1996), pp. 1–32.Google Scholar
  30. [30]
    M. GOLUBITSKY, V. G. LEBLANC, AND I. MELBOURNE, Meandering of the sprial tip: An alternative approach, J. Nonlin. Sci., 7, No. 6, (1997), pp. 557–586.MathSciNetzbMATHCrossRefGoogle Scholar
  31. [31]
    M. GOLUBITSKY AND D. G. SCHAEFFER, A discussion of symmetry and symmetry breaking, Proc. Symp. Pure Math., 40, (1982), pp. 499–515.MathSciNetGoogle Scholar
  32. [32]
    D. G. SCHAEFFER —, Singularities and Groups in Bifurcation Theory, Vol. I, Springer Verlag, (1985).Google Scholar
  33. [33]
    M. GOLUBITSKY, I. STEWART, AND D. G. SCHAEFFER, Singularities and Groups in Bifurcation Theory, Vol. II, Springer Verlag, (1988).Google Scholar
  34. [34]
    J. GUCKENHEIMER AND P. HOLMES, Structurally stable heteroclinic cycles, Math. Proc. Cambridge Phil. Soc., 103, (1988), pp. 189–192.MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    F. GUYARD, Interactions de mode dans les problèmes de bifurcation avec symétry sphérique, PhD thesis, Université de Nice Sophia — Antipolis, (1994).Google Scholar
  36. [36]
    F. GUYARD AND R. LAUTERBACH, Forced symmetry breaking perturbations for periodic solutions, Nonlinearity, 10, (1997), pp. 291–310.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [37]
    M. HAMERMESH, Group Theory, Addison-Wesley Publishing Company, (1962).Google Scholar
  38. [38]
    H. HANSSMANN, Equivariant perturbations of the Euler top, in Nonlinear dynamical systems and chaos, H. W. Broer, S.A. van Gils, I. Hoveijn, F. Takens, ed., vol. 19 of Progress in Nonlin. Diff. Equat. and their Appl., Basel, (1996), Birkhäuser, pp. 227–252.Google Scholar
  39. [39]
    M. W. HIRSCH, C. C. PUGH, AND M. SHUB, Invariant Manifolds, 583, of Lecture Notes in Mathematics, Springer Verlag, (1977).Google Scholar
  40. [40]
    P. HIRSCHBERG AND E. KNOBLOCH, Complex dynamics in the Hopf bifurcation with broken translational symmetry, Physica D, 90, (1996), pp. 56–78.MathSciNetzbMATHCrossRefGoogle Scholar
  41. [41]
    E. KNOBLOCH —, Mode interactions in large aspect ratio convection, J. Nonl. Sci., 7, (1997), pp. 537–556.MathSciNetzbMATHCrossRefGoogle Scholar
  42. [42]
    J. HORNOS AND Y. HORNOS, Algebraic models for the evolution of the genetic code, Phys. Rev. Lett., (1993), pp. 4401–4405.Google Scholar
  43. [43]
    C. Hou AND M. GOLUBITSKY, An example of symmetry breaking to heteroclinic cycles, J. Diff. Equat., 133, (1997), pp. 30–48.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [44]
    M. H. JENSEN, G. PALADIN, AND A. VULPIANI, Intermittency in a cascade model for three-dimensional turbulence, Phys. Rev. A, 43, (1991), pp. 798–804.CrossRefGoogle Scholar
  45. [45]
    V. KIRK AND M. SILBER, A competition between heteroclinic cycles, Nonlinearity, 7, (1994), pp. 1605–1621.MathSciNetzbMATHCrossRefGoogle Scholar
  46. [46]
    M. KRUPA, Bifurcations of relative equilibria, SIAM J. Math. Anal., 21, (1990), pp. 1453–1486.MathSciNetzbMATHCrossRefGoogle Scholar
  47. [47]
    —, Robust heteroclinic cycles, J. Nonl. Sc., 7, (1997), pp. 129–176.MathSciNetzbMATHCrossRefGoogle Scholar
  48. [48]
    R. LAUTERBACH, Forced symmetry breaking from O (3), in Bifurcation and Symmetry, K. B. Eugene Allgower and M. Golubitsky, eds., Int. Ser. Num. Math. 104, Birkhäuser, (1992), pp. 253–262.Google Scholar
  49. [49]
    —, Forced symmetry breaking on semispheres, in Differential Equations,Simo, ed., World Scientific, (1993).Google Scholar
  50. [50]
    —, Symmetry breaking in dynamical systems, in Nonlinear Dynamical Systems and Chaos, H. W. Broer, S. van Gils, I. Hoveijn, and F. Takens, eds., Birkhäuser, (1996).Google Scholar
  51. [51]
    R. LAUTERBACH, S. MAIER, AND E. REISSNER, A systematic study of heteroclinic cycles in dynamical system with broken symmetries, Proc. Roy. Soc. Edinburgh, 126A, (1996), pp. 885–909.CrossRefGoogle Scholar
  52. [52]
    R. LAUTERBACH AND M. ROBERTS, Heteroclinic cycles in dynamical systems with broken spherical symmetry, J. Diff. Equat., 100, (1992), pp. 428–448.MathSciNetCrossRefGoogle Scholar
  53. [53]
    S. MAIER-PAAPE AND R. LAUTERBACH, Heteroclinic cycles for reaction diffusion systems by forced symmetry breaking, Trans. Am. Math. Soc., to appear, (1998).Google Scholar
  54. [54]
    M. MöHRLE, U. FEISTE, J. HöRER, R. MOLT, AND B. SATORINS, Gigahertz self-pulsation in 1.5 μm wavelength multisection DFB lasers, IEEE Photonics Technol. Letter, 4, (1992), pp. 976–979.CrossRefGoogle Scholar
  55. [55]
    G. NICOLIS AND I. PRIGOGINE, Self-Organization in Nonequilibrium Systems, John Wiley and Sons, Inc., (1977).Google Scholar
  56. [56]
    D. PETERHOF, L. RECKE, AND B. SANDSTEDE, On frequency locking of self-pulsating two-section DFB-lasers, in Self-Organization in Activator-Inhibitor Systems: semiconductors, Gas-Discharge and Chemical Active Media, H. Engel, F.-J. Niedernostheide, H.-G. Purwins, and E. Scholl, eds., 157 of WE-Hereaus-Seminar, (1996), pp. 218–222.Google Scholar
  57. [57]
    D. PETERHOF AND B. SANDSTEDE, All-optical clock recovery using multi-section distributed feedback lasers, Preprint 356, WIAS, (1997).Google Scholar
  58. [58]
    L. RECKE AND D. PETERHOF, Abstract forced symmetry breaking and forced frequency locking of modulated waves, J. Diff. Equat., 144, (1998), pp. 233–262.MathSciNetzbMATHCrossRefGoogle Scholar
  59. [59]
    E. REISSNER, On flows with spatio-temporal symmetries near heteroclinic networks, PhD thesis, Univ. Augsburg, 1998.Google Scholar
  60. [60]
    P. H. ROBERTS, Dynamics of the core, geodynamo, Rev. Geophys., 33, (1995), pp. 177–192, Scholar
  61. [61]
    B. SANDSTEDE AND A. SCHEEL, Forced symmetry breaking of homoclinic cycles, Nonlinearity, 8, (1994), pp. 333–365.MathSciNetCrossRefGoogle Scholar
  62. [62]
    B. SANDSTEDE, A. SCHEEL, AND C. WULFF, Dynamics of spiral waves on unbounded domains using center-manifold reductions, J. Diff. Equat., 141, (1997), pp.122–149.Google Scholar
  63. [63]
    J. SEIPENBUSCH, T. ACKEMANN, B. SCHAPERS, B. BERGE, AND W. LANGE, Drift instability and locking behaviour of optical patterns, Phys. Rev, A 56, (1997), pp. R4401–4404.CrossRefGoogle Scholar
  64. [64]
    A. C. SKELDON, K. CLIFFE, AND D. S. RILEY, Grid design for the computation of a hexagon-roll interaction using a finite element method, J. Comp. Phys., 133, (1997), pp. 18–26.zbMATHCrossRefGoogle Scholar
  65. [65]
    T. A. SPRINGER, Invariant Theory, vol. 585 of Lecture Notes in Mathematics, Springer Verlag, (1977).Google Scholar
  66. [66]
    A. VANDERBAUWHEDE, Symmetry and bifurcation near families of solutions, J. Diff. Equat., 36, (1980), pp. 173–178.MathSciNetzbMATHCrossRefGoogle Scholar
  67. [67]
    —, Local Bifurcation and Symmetry, vol. 75 of Research Notes in Mathematics, Pitman, (1982).Google Scholar
  68. [68]
    H. WENZEL, W. H. J, U. BANDELOW, AND J. REHBERG, Mechanism of self-pulsation in two-section DFB lasers, J. Quant. Electron., 32, (1996), pp. 69–78.CrossRefGoogle Scholar
  69. [69]
    C. WULFF, Theory of meandering and drifting spiral waves in reaction-diffusion systems, PhD thesis, Freie Universität Berlin, (1996).Google Scholar
  70. [70]
    M. YAMATA AND K. OHKITANI, Lyapunov spectrum of a model of two-dimensional turbulence, Phys. Rev. Letters, 60, (1988), pp. 983–986.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Frederic Guyard
    • 1
  • Reiner Lauterbach
    • 1
  1. 1.Weierstrass Institute for Applied Analysis and Stochastics (WIAS)BerlinGermany

Personalised recommendations