Skip to main content

Rayleigh-Bénard Convection with Rotation at Small Prandtl Numbers

  • Chapter
Pattern Formation in Continuous and Coupled Systems

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 115))

Abstract

This paper reviews past results from and future prospects for experimental studies of Rayleigh-Bénard convection with rotation about a vertical axis. At dimensionless rotation rates 0 ≤ Ω ≤ 20 and for Prandtl numbers σ ≃ 1, Küppers-Lortz-unstable patterns offered a unique opportunity to study spatio-temporal chaos immediately above a supercritical bifurcation where weakly-nonlinear theories in the form of Ginzburg-Landau (GL) or Swift-Hohenberg (SH) equations can be expected to be valid. However, the dependence of the time and length scales of the chaotic state on ε ≡ ΔT/ΔT C - 1 was found to be different from the expected dependence based on the structure of GL equations. For Ω ≳ 70 and 0.7 ≲ σ ≲ 5 patterns were found to be cellular near onset with local four-fold coordination. They differ from the theoretically expected Küppers-Lortz-unstable state. Stable as well as intermittent defect-free rotating square lattices exist in this parameter range.

Smaller Prandtl numbers ( 0.16 ≲ σ ≲ 0.7) can only be reached in mixtures of gases. These fluids are expected to offer rich future opportunities for the study of a line of tricritical bifurcations, of supercritical Hopf bifurcations to standing waves, of a line of codimension-two points, and of a codimension-three point.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. For a recent review, see for instance, M.C. CROSS AND P.C. HOHENBERG, Rev. Mod. Phys. 65, 851 (1993).

    Article  Google Scholar 

  2. V. CROQUETTE, Contemp. Phys. 30, 113 (1989).

    Article  Google Scholar 

  3. V. CROQUETTE, Contemp. Phys. 30, 153 (1989).

    Article  Google Scholar 

  4. E. BODENSCHATZ, J.R. DE BRUYN, G. AHLERS, AND D.S. CANNELL, Phys. Rev. Lett. 67, 3078 (1991).

    Article  Google Scholar 

  5. E. BODENSCHATZ, D.S. CANNELL, J.R. DE BRUYN, R. ECKE, Y. Hu, K. LERMAN, AND G. AHLERS, Physica D 61, 77 (1992).

    Article  MATH  Google Scholar 

  6. S.W. MORRIS, E. BODENSCHATZ, D.S. CANNELL, AND G. AHLERS, Phys. Rev. Lett. 71, 2026 (1993).

    Article  Google Scholar 

  7. M. ASSENHEIMER AND V. STEINBERG, Phys. Rev. Lett. 70, 3888 (1993).

    Article  Google Scholar 

  8. M. ASSENHEIMER AND V. STEINBERG, Nature 367, 345 (1994).

    Article  Google Scholar 

  9. Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. E 48, 4399 (1993).

    Article  Google Scholar 

  10. L. NING, Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. Lett. 71, 2216 (1993).

    Article  Google Scholar 

  11. Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. Lett. 72, 2191 (1994).

    Article  Google Scholar 

  12. Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. Lett. 74, 391 (1995).

    Article  Google Scholar 

  13. Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. E 51, 3263 (1995).

    Article  Google Scholar 

  14. R.E. ECKE, Y. Hu, R. MAINIERI, AND G. AHLERS, Science 269, 1704 (1995).

    Article  Google Scholar 

  15. S.W. MORRIS, E. BODENSCHATZ, D.S. CANNELL, AND G. AHLERS, Physica D 97, 164 (1996).

    Article  Google Scholar 

  16. J.R. DE BRUYN, E. BODENSCHATZ, S.W. MORRIS, S. TRAINOFF, Y. HU, D.S. CANNELL, AND G. AHLERS, Rev. Sci. Instrum. 67, 2043 (1996).

    Article  Google Scholar 

  17. J. Liu AND G. AHLERS, Phys. Rev. Lett. 77, 3126 (1996).

    Article  Google Scholar 

  18. B. PLAPP AND E. BODENSCHATZ, Phys. Script. 67, 111 (1996).

    Article  Google Scholar 

  19. J. Liu AND G. AHLERS, Phys. Rev. E 55, 6950 (1997).

    Article  Google Scholar 

  20. K.M.S. BAJAJ, D. CANNELL, AND G. AHLERS, Phys. Rev. E 55, 4869 (1997).

    Article  MathSciNet  Google Scholar 

  21. R. CAKMUR, D. EGOLF, B. PLAPP, AND E. BODENSCHATZ, Phys. Rev. Lett. 79, 1853 (1997).

    Article  Google Scholar 

  22. A. SCHLUTER, D. LORTZ, AND F.H. BUSSE, J. Fluid Mech. 23, 129 (1965).

    Article  MathSciNet  Google Scholar 

  23. Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. Lett. 74, 5040 (1995).

    Article  Google Scholar 

  24. K.M.S. BAJAJ, J. Liu, B. NABERHUIS, AND G. AHLERS, Phys. Rev. Lett. 81, 806 (1998).

    Article  Google Scholar 

  25. G. KüPPERS AND D. LORTZ, J. Fluid Mech. 35, 609 (1969).

    Article  MATH  Google Scholar 

  26. G. KüPPERS, Phys. Lett. 32A, 7 (1970).

    Google Scholar 

  27. R.M. CLEVER AND F.H. BUSSE, J. Fluid Mech. 94, 609 (1979).

    Article  MATH  Google Scholar 

  28. F.H. BUSSE AND K.E. HEIKES, Science 208, 173 (1980).

    Article  Google Scholar 

  29. K.E. HEIKES AND F.H. BUSSE, Ann. N.Y. Acad. Sci. 357, 28 (1980).

    Article  Google Scholar 

  30. Y. Hu, R.E. ECKE, AND G. AHLERS, Phys. Rev. E 55, 6928 (1997).

    Article  Google Scholar 

  31. Y. Hu, W. PESCH, G. AHLERS, AND R.E. ECKE, Phys. Rev. E, in print (1998).

    Google Scholar 

  32. One exception is liquid helium. As the superfluid-transition temperature 2.176 K is approached from above, σ vanishes. However, experiments are difficult because σ varies from a value of order one to zero over a narrow temperature range of a few mK, and because of the problem of flow visualization, which has only recently been achieved under the required cryogenic conditions (P. Lucas, A. Woodcraft, R. Matley, and W. Wong, International Workshop on Ultra-High Reynolds-Number Flows, Brookhaven National Laboratory, June 18 to 20, 1996). Other exceptions are liquid metals which have σ = O(10-2) because of the large electronic contribution to the conductivity. However, it is not possible to explore the range 10-2 ≲ σ ≲ 0.7 with them. Since liquid metals are not transparent to visible light, flow visualization is also a problem.

    Google Scholar 

  33. T. CLUNE AND E. KNOBLOCH, Phys. Rev. E 47, 2536 (1993).

    Article  MathSciNet  Google Scholar 

  34. Early theoretical evidence for the existence of a subcritical and tricritical bifurcation is contained in the work of Clever and Busse (CB) (Ref. [27]). More recent calculations of the tricritical line by Clune and Knobloch (Ref. [33]) are inconsistent with the result of CB. Using programs developed by W. Pesch, we re-calculated the tricritical line and obtained the result shown in Fig. 3 which is more detailed than, but agrees with that of CB.

    Google Scholar 

  35. K. BUHLER AND H. OERTEL, J. Fluid Mech. 114, 261 (1982).

    Article  Google Scholar 

  36. J.J. NIEMELA AND R.J. DONNELLY, Phys. Rev. Lett. 57, 2524 (1986).

    Article  Google Scholar 

  37. F. ZHONG, R. ECKE, AND V. STEINBERG, Physica D 51, 596 (1991).

    Article  MATH  Google Scholar 

  38. F. ZHONG AND R. ECKE, Chaos 2, 163 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  39. Y. Tu AND M. CROSS, Phys. Rev. Lett. 69, 2515 (1992).

    Article  Google Scholar 

  40. M. FANTZ, R. FRIEDRICH, M. BESTEHORN, AND H. HAKEN, Physica D 61, 147 (1992).

    Article  MATH  Google Scholar 

  41. M. NEUFELD, R. FRIEDRICH, AND H. HAKEN, Z. Phys. B. 92, 243 (1993).

    Article  Google Scholar 

  42. M. CROSS, D. MEIRON, AND Y. TU, Chaos 4, 607 (1994).

    Article  Google Scholar 

  43. Y. PONTY, T. PASSOT, AND P. SULEM, Phys. Rev. Lett. 79, 71 (1997).

    Article  Google Scholar 

  44. Recently it was shown in Ref. [31] that the data for ξ and ωacan be fit with a powerlaw and the expected theoretical leading exponents if large correction terms are allowed in the analysis.

    Google Scholar 

  45. S. CHANDRASEKHAR, Hydrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford, 1961

    MATH  Google Scholar 

  46. M.E. FISHER, Phys. Rev. 176, 257 (1968).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ahlers, G., Bajaj, K.M. (1999). Rayleigh-Bénard Convection with Rotation at Small Prandtl Numbers. In: Golubitsky, M., Luss, D., Strogatz, S.H. (eds) Pattern Formation in Continuous and Coupled Systems. The IMA Volumes in Mathematics and its Applications, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1558-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1558-5_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7192-5

  • Online ISBN: 978-1-4612-1558-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics