Skip to main content

The Radiation Therapy Planning Problem

  • Chapter
Computational Radiology and Imaging

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 110))

Abstract

In this article we describe mathematical aspects of the radiation therapy optimization problem. Various says of formulating the problem are presented and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. F. Bielajew, Photon Monte Carlo Simulation, Lecture Notes, National Research Council of Canada, Report PIRS-0393, available on the internet at http://ehssun.lbl.gov/egs/epub/course.html 1993.

  2. A. F. Bielajew and D.W.O. Rogers, Electron Monte Carlo Simulation, Lecture Notes, National Research Council of Canada, Report PIRS-0394, available on the internet at http://ehssun.lbl.gov/egs/epub/course.html 1993.

    Google Scholar 

  3. C. Börgers, A fast iterative method for computing particle beams penetrating matter,J. Comp. Phys., 133, 323–339, 1997.

    Article  MATH  Google Scholar 

  4. C. Börgers, Complexity of Monte Carlo and deterministic dose-calculation methods, Phys. Med. Biol., 43, 517–528, 1998.

    Article  Google Scholar 

  5. C. Börgers and E.W.Larsen, The transversely integrated scalar flux of a narrowly focused particle beam, SIAM J. Appl. Math, 50, No. 1, 1–22, 1995.

    Article  Google Scholar 

  6. C. Börgers and E.W. Larsen, Asymptotic derivation of the Fermi pencil beam approximation, Nucl. Sci. Eng., 123, No. 3, 343–357, 1996.

    Google Scholar 

  7. C. Börgers and E.W. Larsen, On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport, Med. Phys., 23, 17491759, 1996.

    Google Scholar 

  8. C. Börgers and E.T. Quinto, Nullspace and conditioning of the mapping from beam weights to dose distributions in radiation therapy planning, in preparation.

    Google Scholar 

  9. C. Burman, G.J. Kutcher, B. Emami, and M. Goitein, Fitting of normal tissue tolerance data to analytic functions, Int. J. Rad. Onc. Biol. Phys., 21, 123–135, 1991.

    Google Scholar 

  10. Y. Censor, Mathematical aspects of radiation therapy treatment planning: Continuous inversion versus full discretization and optimization versus feasibility, in this volume.

    Google Scholar 

  11. Y. Censor, M.D. Altschuler, and W.D. Powlis, On the use of Cimmino’s simultaneous projection method for computing a solution of the inverse problem in radiation therapy treatment planning,Inverse Problems, 4, 607–623, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  12. A.M. Cormack and E.T. Quinto, The mathematics and physics of radiation dose planning using X-rays, Contemporary Mathematics, 113, 41–55, 1990.

    Article  MathSciNet  Google Scholar 

  13. R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 6, Springer-Verlag, 1993.

    Book  Google Scholar 

  14. J.O. Deasy, Multiple local minima in radiotherapy optimization problems with dose-volume constraints, Med. Phys., 24, No. 7, 1157–1161, 1997.

    Article  Google Scholar 

  15. J.J. Duderstadt and W.R. Martin, Transport Theory, John Wiley & Sons, 1979.

    MATH  Google Scholar 

  16. E. Fermi, result reported in B. Rossi and K. Greisen, Cosmic ray theory, Rev. Mod. Phys., 13, 240, 1941.

    Google Scholar 

  17. M. Goitein, Causes and consequences of inhomogeneous dose distributions in radiation therapy, Int. J. Rad. Onc. Biol. Phys., 12, 701–704, 1986.

    Article  Google Scholar 

  18. M. Goitein and A. Niemierko, Biologically based models for scoring treatment plans, presentation to the Joint U.S./Scandinavian Symposium on Future Directions of Computer-Aided Radiotherapy, San Antonio, 1988.

    Google Scholar 

  19. T. Holmes and T.R. Mackie, A comparison of three inverse treatment planning algorithms, Phys. Med. Biol., 39 91–106, 1994.

    Article  Google Scholar 

  20. J.J. Janssen, D.E.J. Riedeman, M. Morawska-Kaczyińska, P.R.M. Storchi, and H. Huizenga, Numerical calculation of energy deposition by high-energy electron beams: III. Three-dimensional heterogeneous media, Phys. Med. Biol., 39, 1351–1366, 1994.

    Article  Google Scholar 

  21. J.J. Janssen, E.W. Korevaar, R.M. Storchi, and H. Huizenga, Numerical calculation of energy deposition by high-energy electron beams: III-B. Improvements to the 6D phase space evolution model, Phys. Med. Biol., 42, 1441–1449, 1997.

    Article  Google Scholar 

  22. D. Jette, Electron beam dose calculations, in Radiation Therapy Physics, A. R. Smith (ed.), 95–121, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  23. H.E. Johns and J.R. Cunningham, The Physics of Radiology, fourth edition, Charles C. Thomas, 1983.

    Google Scholar 

  24. F.M. Khan, The Physics of Radiation Therapy, second edition, Williams & Wilkins, 1994.

    Google Scholar 

  25. K.M. Khattab and E.W. Larsen, Synthetic acceleration methods for linear transport problems with highly anisotropic scattering, Nucl. Sci. Eng., 107 217–227, 1991.

    Google Scholar 

  26. G.J. Kutcher and C. Burman, Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method, Int. J. Rad. Onc. Biol. Phys., 16 1623–1630, 1989.

    Article  Google Scholar 

  27. E.W. Larsen, Diffusion-synthetic acceleration methods for discrete-ordinate problems, Transport Theory Stat. Phys., 13 107–126, 1984.

    Article  Google Scholar 

  28. E.W. Larsen, Tutorial: The nature of transport calculations used in radiation oncology, Transport Theory Stat. Phys., 26 No. 7, 739, 1997.

    Article  MATH  Google Scholar 

  29. R.Y. Levine, E.A. Gregerson, and M.M. Urie, The application of the X-ray transform to 3D conformal radiotherapy, in this volume.

    Google Scholar 

  30. I. Lux and L. Koblinger, Monte Carlo Particle Transport Methods: Neutron and Photon Calculations, CRC Press, 1991.

    Google Scholar 

  31. J.T. Lyman, Complication probability as assessed from dose-volume histograms, Rad. Res., 104 S-13—S-19, 1985.

    Article  Google Scholar 

  32. R. Mohan, G.S. Maleras, B. Baldwin, L.J. Brewster, G.J. Kutcher, S. Leibel, C.M. Burman, C.C. Ling, and Z. Fuks, Clinically relevant optimization of 3-D conformal treatments, Med. Phys., 19 933–944, 1992.

    Article  Google Scholar 

  33. R. Mohan, X. Wang, A. Jackson, T. Bortfeld, A.L. Boyer, G. J. Kutcher, S.A. Leibel, Z. Furs, and C.C. Ling, The potential and limitations of the inverse radiotherapy technique, Radiother. Oncol., 32 232–248, 1994.

    Article  Google Scholar 

  34. J.E. Morel and T.A. Manteuffel, An angular multigrid acceleration technique for S n equations with highly forward-peaked scattering, Nucl. Sci. Eng., 107 330–342, 1991.

    Google Scholar 

  35. H. Neuenschwander, T.R. Mackie, and P.J. Reckwerdt, MMC — A high-performance Monte Carlo code for electron beam treatment planning, Phys. Med. Biol., 40 543, 1995.

    Article  Google Scholar 

  36. A. Niemierko, Optimization of intensity modulated beams: Local or global optimum?, Med. Phys., 23 1072, 1996.

    Google Scholar 

  37. A. Niemierko and M. Goitein, Calculation of normal tissue complication probability and dose-volume histogram reduction schemes for tissues with a critical element structure, Radiother. Oncol., 20 166–176, 1991.

    Article  Google Scholar 

  38. A. Niemierko, M. Urie, and M. Goitein, Optimization of 3D radiation therapy with both physical and biological end points and constraints, Int. J. Rad. Onc. Biol. Phys., 23 99–108, 1992.

    Article  Google Scholar 

  39. G.C. Pomraning, Linear Kinetic Theory and Particle Transport in Stochastic Mixtures,Series on Advances in Mathematics for Applied Sciences Vol. 7, World Scientific, Singapore, 1991.

    Google Scholar 

  40. Radiology Centennial, Inc., A Century of Radiology, http://www.xray.hmc.psu.edu/rci/centennial.html, 1993.

  41. C. Raphael, Mathematical modelling of objectives in radiation therapy treatment planning, Phys. Med. Biol., 37 No. 6, 1293–1311, 1992.

    Article  Google Scholar 

  42. S. Webb, The Physics of Three-Dimensional Radiation Therapy, IOP Publishing, Bristol and Philadelphia, 1993.

    Book  Google Scholar 

  43. S. Webb, Optimization by simulated annealing of three-dimensional conformal treatment planning for radiation fields defined by multi-leaf collimators: II. Inclusion of two-dimensional modulation of X-ray intensities, Phys. Med. Biol., 37 1689–1704, 1992.

    Google Scholar 

  44. H.R. Withers, J.M.G. Taylor, and B. Maciejewski, Treatment volume and tissue tolerance,Int. J. Rad. Onc. Biol. Phys., 14 751–759, 1988.

    Article  Google Scholar 

  45. C.D. Zerby and F.L. Keller, Electron transport theory, calculations, and experiments, Nucl. Sci. Eng., 27 190–218, 1967.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Börgers, C. (1999). The Radiation Therapy Planning Problem. In: Börgers, C., Natterer, F. (eds) Computational Radiology and Imaging. The IMA Volumes in Mathematics and its Applications, vol 110. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1550-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1550-9_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7189-5

  • Online ISBN: 978-1-4612-1550-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics