Possible Role of the Transcription Factor Oct-3/4 in Control of Human Chorionic Gonadotropin Expression

  • Limin Liu
  • Douglas Leaman
  • R. Michael Roberts
Part of the Proceedings in the Serono Symposia USA Series book series (SERONOSYMP)


During a study on the regulation of interferon-i genes in choriocarcinoma cells, an hCGa-CAT construct was included as an internal control to check transfection efficiencies. Although Oct-3/4 coexpression had little effect on expression from an IFN-ti promoter that carried several potential Oct binding sequences, the hCGa-CAT construct was strongly silenced. This serendipitous discovery led to the data reported in this chapter and two earlier papers (1,2).


Thymidine Kinase Chorionic Gonadotropin Human Chorionic Gonadotropin Upstream Regulatory Element cAMP Responsiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Liu L, Roberts RM. Silencing of the gene for the ß-subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. J Biol Chem 1996;271: 16683–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu L, Leaman D, Villalta M, Roberts RM. Silencing of the gene for the a-subunit of human chorionic gonadotropin by the embryonic transcription factor Oct-3/4. Mol Endocrinol 1997;11:1651–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ogren L, Talamantes F. The placenta as an endocrine organ: polypeptides. In: Knobil E, Neill JD, eds. The Physiology of reproduction, 2d ed. New York: Raven, 1994:875–945.Google Scholar
  4. 4.
    Hearn JP, Webley GE, Gidley-Baird AA. Chorionic gonadotropin and embryo-maternal recognition during the periimplantation period in primates. J Reprod Fertil 1991;92:497–509.PubMedCrossRefGoogle Scholar
  5. 5.
    Rao CV, Sanfilippo JS. New understanding in the biochemistry of implantation: potential direct roles of luteinizing hormone and human chorionic gonadotropin. Endocrinology 1997;7:107–11.CrossRefGoogle Scholar
  6. 6.
    Fazleabas AT, Donnelly KM, Fortman JD, Miller JB. Modulation of the baboon (Papio anubis) endometrium by chorionic gonadotropin (CG) during the period of uterine receptivity. Biol Reprod 1997;56(Suppl 1):176 (Abstr).CrossRefGoogle Scholar
  7. 7.
    Jameson JL, Hollenberg AN. Regulation of chorionic gonadotropin gene expression. Endocrinol Rev 1993;14:203–19.Google Scholar
  8. 8.
    Boothby M, Ruddon RW, Anderson C, McWilliams D, Boime I. A single gonadotropin a-subunit gene in normal tissue and tumor-derived cell lines. J Biol Chem 1981;256:5121–7.PubMedGoogle Scholar
  9. 9.
    Bo M, Boime I. Identification of the transcriptionally active genes of the chorionic gonadotropin 13 gene cluster in vivo. J Biol Chem 1992;267:3179–84.PubMedGoogle Scholar
  10. 10.
    Silver BJ, Bokar JA, Virgin JB, Vallen EA, Milsted A, Nilson JH. Cyclic AMP regulation of the human glycoprotein hormone alpha-subunit gene is mediated by an 18-base pair element. Proc Nat Acad Sci USA 1987;84:2198–202.PubMedCrossRefGoogle Scholar
  11. 11.
    Deutsch PJ, Jameson JL, Habener JF. Cyclic AMP responsiveness of human gonadotropin-a gene transcription is directed by a repeated 18-base pair enhancer. J Biol Chem 1987;262:12169–74.PubMedGoogle Scholar
  12. 12.
    Delegeane AM, Fedand LH, Mellon PL. Tissue-specific enhancer of the human glycoprotein hormone a-subunit gene: dependence on cyclic AMP-inducible elements. Mol Cell Biol 1987;7:3994–4002.PubMedGoogle Scholar
  13. 13.
    Jameson JL, Powers AC, Gallagher GD, Habener JF. Enhancer, promoter element interactions dictate cyclic adenosine monophosphate mediated, cell-specific expression of the glycoprotein hormone a-gene. Mol Endocrinol 1989;3:763–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Andersen B, Kennedy GC, Nilson JH. A cis-acting element located between the cAMP response elements and CCAAT box augments cell-specific expression of the glycoprotein hormone alpha subunit gene. J Biol Chem 1990;265:21874–80.PubMedGoogle Scholar
  15. 15.
    Kennedy GC, Andersen B, Nilson JH. The human a-subunit glycoprotein hormone gene utilizes a unique CCAAT binding factor. J Biol Chem 1990;265: 6279–85.PubMedGoogle Scholar
  16. 16.
    Steger DJ, Altschmied J, Boscher M, Mellon PL. Evolution of placenta-specific gene expression: comparison of the equine and human gonadotropin a-subunit genes. Mol Endocrinol 1991;5:243–55.PubMedCrossRefGoogle Scholar
  17. 17.
    Johnson W, Albanese C, Handwerger S, Williams T, Pestell RG, Jameson JL. Regulation of the human chorionic gonadotropin alpha-and beta-subunit promoters by AP-2. J Biol Chem 1997;272:15405–12PubMedCrossRefGoogle Scholar
  18. 18.
    Jameson JL, Lindell CM. Isolation and characterization of the human chorionic gonadotropin (3-subunit (CG13) gene cluster: regulation of a transcriptionally active CGI3 gene by cyclic AMP. Mol Cell Biol 1988;8:5100–7.PubMedGoogle Scholar
  19. 19.
    Otani T, Otani F, Krych M, Chaplin DD, Boime I. Identification of a promoter region in the CGß gene cluster. J Biol Chem 1988;263:7322–9.PubMedGoogle Scholar
  20. 20.
    Steger DJ, Boscher M, Hect JG, Mellon PL. Coordinate control of the a-and (3-subunit genes of human chorionic gonadotropin by trophoblast-specific element-binding protein. Mol Endocrinol 1993;7:1579–88.PubMedCrossRefGoogle Scholar
  21. 21.
    Albanese C, Kay TWH, Toccoli NM, Jameson JL. Novel cyclic adenosine 3“, 5.monophosphate response element in the human chorionic gonadotropin 13-subunit gene. Mol Endocrinol 1991;5:693–702.PubMedCrossRefGoogle Scholar
  22. 22.
    Pestell RG, Hollenberg AN, Albanese C, Jameson JL. C-Jun represses transcription of the human chorionic gonadotropin a and ß genes through distinct types of CREs. J Biol Chem 1994;269:31090–6.PubMedGoogle Scholar
  23. 23.
    Okamoto K, Okazawa H, Okuda A, Sakai M, Muramatsu M, Hamada H. A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell 1990;60:461–72.PubMedCrossRefGoogle Scholar
  24. 24.
    Rosner MH, Vigano MA, Ozato K, Timmons PM, Poirier F, Rugby PW, et al. A POU-domain transcription factor in early stem cells and germ cells of the mammalian embryo. Nature 1990;345:686–92.PubMedCrossRefGoogle Scholar
  25. 25.
    Scholer HR, Dressler GR, Balling R, Rohdewohld H, Gruss P. Oct-4: a germlinespecific transcription factor mapping to the mouse t-complex. EMBO J 1990;9: 2185–95.PubMedGoogle Scholar
  26. 26.
    Verrijzer CP, Van der Vliet PC. POU domain transcription factors. Biochim Biophys Acta1993;1173:1–21.Google Scholar
  27. 27.
    Scholer HR, Ruppert S, Suzuki N, Chowhurdy K, Gruss P. A new type of POU domain in germ line-specific protein. Nature 1990;344:435–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Palmier SL, Peter W, Hess H, Scholer HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Devel Biol 1994;166:259–67.CrossRefGoogle Scholar
  29. 29.
    Okazawa H, Okamoto K, Ishino F, et al. The Oct-3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J 1991;10:2997–3005.PubMedGoogle Scholar
  30. 30.
    Pikarsky E, Sharir H, Ben-Shushan E, Bergman Y. Retinoic acid represses Oct-3/4 gene expression through several retinoic acid-responsive elements located in the promoter-enhancer region. Mol Cell Biol 1994;14:1026–38.PubMedGoogle Scholar
  31. 31.
    Meyer TE, Habener JF. Cyclic adenosine 3 ’,5 ’-monophate response element binding protein (CREB) and related transcription-activating deoxyribonucleic acid-binding proteins. Endocr Rev 1993;14:269–90.PubMedGoogle Scholar
  32. 32.
    Gstaiger M, Knoepfel L, Georgiev O, Schaffner W. Hovens CM. A B-cell coactivator of octamer-binding transcription factors. Nature 1995;373:360–2.PubMedCrossRefGoogle Scholar
  33. 33.
    Strubin M, Newell JW, Matthias P. OBF-1, a novel B-cell-specific coactivator that stimulates immunoglobulin promoter activity through association with octamer-binding proteins. Cell 1995;80:497–506.PubMedCrossRefGoogle Scholar
  34. 34.
    Luo Y, Roeder RG. Cloning, functional characterization, and mechanism of action of the B-cell-specific transcriptional coactivator OCA-B. Mol Cell Biol 1995;15: 4115–24.PubMedGoogle Scholar
  35. 35.
    Verrijzer CP, Alkema MJ, Van Weperen WW, Van Leeuwen HC, Strating MJJ, van der Vilet PC. The DNA binding specificity of the bipartitie POU domain and its subdomains. EMBO J 1992;11:4993–5003.PubMedGoogle Scholar
  36. 36.
    Pittman RH, Clay CM, Farmerie TA, Nilson JH. Functional analysis of the placenta-specific enhancer of the human glycoprotein hormone a-subunit gene. J Biol Chem 1994;269:19360–8.PubMedGoogle Scholar
  37. 37.
    Bhat K, McBurney MW, Hamada H. Functional cloning of mouse chromosomal loci specifically active in embryonal carcinoma stem cells. Mol Cell Biol 1988;8: 3251–9.PubMedGoogle Scholar
  38. 38.
    McKnight SL, Gavis ER, Kingsbury R, Axel R. Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 1981;25:385–98.CrossRefGoogle Scholar
  39. 39.
    Weis L, Reinberg D. Transcription by RNA polymerase II: initiator-directed formation of transcription-competent complexes. FASEB J 1992;6:3330–9.Google Scholar
  40. 40.
    Roy AL, Malik S, Meisterernst M, Roeder RG. An alternative pathway for transcription initiation involving Tfli-I. Nature 1993;365:355–9.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Limin Liu
  • Douglas Leaman
  • R. Michael Roberts

There are no affiliations available

Personalised recommendations