Skip to main content

The Transfer Operator Approach to Selberg’s Zeta Function and Modular and Maass Wave Forms For P S L (2, ℤ)

  • Chapter
Emerging Applications of Number Theory

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 109))

Abstract

In this paper we discuss the transfer operator approach to Selberg’s zeta function for P S L(2, ℤ). Since this function can be expressed as the Fredholm determinant det(1 - L β ) of the transfer operator L β , βC for the geodesic flow on the modular surface, the zeros and poles of the Selberg function are closely related to those β-values, where L β has an eigenvalue λ = 1 respectively where L β has poles. It turns out that the corresponding eigenfunctions of L β for eigenvalues λ = 1 are closely related to both holomorphic and non-holomorphic modular forms respectively the Maass wave forms. Therefore these eigenfunctions, which by definition of L β are holomorphic functions, are by themselves interesting quantities for the group P S L (2, ℤ): indeed special cases are the period polynomials and functions of the Manin-Eichler and Shimura theory of periods for this group. Another special example of such an eigenfunction is the well known density of Gauss’s measure for the continued fraction expansion. The transfer operator approach hence in a surprising way combines several aspects of the theory of modular and Maass wave forms for the modular group, which up to now were not directly related.

The work is supported by DFG Schwerpunktprogramm “Ergodentheorie, Analysis und effiziente Simulation dynamischer Systeme”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Artin, Ein mechanisches System mit quasiergodischen Bahnen, Collected papers, Addison-Wesley, Reading MA. (1965), pp. 499–504.

    Google Scholar 

  2. R. Adler, L. Flatto, Cross section maps for the geodesic now on the modular surface, Contemp. Math. 26, Am. Math. Soc. Providence RI. (1984), pp. 9–24.

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Cartier, An introduction to zeta functions, in “From Number theory to Physics” eds: M. Waldschmidt et al., Springer Verlag, Berlin (1992).

    Google Scholar 

  4. B. Dwork, On the rationality of the zeta function of an algebraic variety, Am. J. Math. 82 (1960), pp. 631–648.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Deligne, La conjecture de Weil I, Publ. Math. IHES, no. 43. Press Univ. France (1974).

    Google Scholar 

  6. M. Gutzwiller, Chaos in Classical and Quantum mechanics, Springer-Verlag, New York (1990).

    MATH  Google Scholar 

  7. A. Grothendieck, Formule de Lefschetz et rationalité de fonctions L, Sem. Bourbaki no. 279, Benjamin, N.Y. (1966).

    Google Scholar 

  8. A. Grothendieck, La théorie de Fredholm, Bull. Soc. math. France 84 (1956), pp. 319–384.

    MathSciNet  MATH  Google Scholar 

  9. K. Hoffman, Banach Spaces of Analytic Functions, Prentice Hall, Inc. (1965).

    Google Scholar 

  10. J. Lewis, Spaces of Holomorphic Functions Equivalent to the Even Maass Cusp Forms, Invent. Math. 127 (1997), pp. 271–306.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Lewis, private communication.

    Google Scholar 

  12. A. Lasota, M. Mackey, Probabilistic properties of deterministic systems, Cambridge Univ. Press, Cambridge (1985).

    Book  MATH  Google Scholar 

  13. J. Lewis, D. ZAGIER, Period functions and the Selberg zeta function for the modular group, Preprint MPI Mathematik Bonn, MPI 96/112 (1996).

    Google Scholar 

  14. A. Manning, Dynamics of geodesic and horocycle rows on surfaces of constant negative curvature, in “Ergodic theory, symbolic dynamics and hyperbolic spaces” eds: T. Bedford et al., Oxford Univ. Press (1991), pp. 71–91.

    Google Scholar 

  15. D.H. Mayer, Continued fractions and related transformations, in “Ergodic theory, symbolic dynamics and hyperbolic spaces” eds: T. Bedford et al., Oxford Univ. Press (1991), pp. 175–222.

    Google Scholar 

  16. D.H. Mayer, On the Thermodynamic Formalism for the Gauss Map, Commun. Math. Phys. 130 (1990), pp. 311–333.

    Article  MATH  Google Scholar 

  17. D.H. Mayer, The thermodynamic formalism approach to Selberg’s zeta function for P S L (2, ℤ), Bull. Am. Math. Soc. 25 (1991), pp. 55–60.

    Article  MATH  Google Scholar 

  18. W. Magnus, F. Oberhettinger and R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, Springer-Verlag, Berlin (1966).

    MATH  Google Scholar 

  19. N. Nielsen, Traité Élémentaire des Nombres de Bernoulli, Gauthier-Villars, Paris (1923).

    Google Scholar 

  20. P. Robba, Une introduction naive aux cohomologies de Dwork, Soc. Math. France 2e Serie, Memoire no. 23 (1986), pp. 61–105.

    MATH  Google Scholar 

  21. D. Ruelle, Zeta functions and statistical mechanics, Soc. Math. France. Asterisque 40. (1976), pp. 167–176.

    MathSciNet  Google Scholar 

  22. D. Ruelle, Generalized zeta functions for Axiom A basic sets, Bull. Am. Math. Soc. 82 (1976), pp. 153–156.

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Ruelle, Zeta functions for expanding maps and Anosov flows, Invent. Math. 34 (1976), pp. 231–242.

    Article  MathSciNet  MATH  Google Scholar 

  24. D. Ruelle, Thermodynamic formalism, Addison-Wesley, Reading MA (1978).

    MATH  Google Scholar 

  25. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Ind. Math. Soc. 20 (1956), pp. 47–87.

    MathSciNet  MATH  Google Scholar 

  26. P. Sarnak, Arithmetic Quantum Chaos, Schur lectures Tel Aviv 1992; Israel math. conf. proceedings 8 (1995), pp. 183–236.

    MathSciNet  Google Scholar 

  27. C. Series, The modular surface and continued fractions, J. London Math. Soc. (2) 31 (1985), pp. 69–80.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Zagier, Periods of modular forms, traces of Hecke operators and multiple zeta values, in “Studies of automorphic forms and L-functions” RIMS Kyoto (1992), pp. 162–170.

    Google Scholar 

  29. D. Zagier, Periods of modular forms and Jacobi theta functions, Invent. Math. 104 (1991), pp. 449–465.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, CH., Mayer, D.H. (1999). The Transfer Operator Approach to Selberg’s Zeta Function and Modular and Maass Wave Forms For P S L (2, ℤ). In: Hejhal, D.A., Friedman, J., Gutzwiller, M.C., Odlyzko, A.M. (eds) Emerging Applications of Number Theory. The IMA Volumes in Mathematics and its Applications, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1544-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1544-8_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7186-4

  • Online ISBN: 978-1-4612-1544-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics