Skip to main content

A Survey of Discrete Trace Formulas

  • Chapter
Emerging Applications of Number Theory

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 109))

  • 1004 Accesses

Abstract

The goal is to survey work on Selberg’s trace formula for discrete quotient spaces G/K both finite and infinite. Here G is often the general linear group GL(n, F) consisting of n × n non-singular matrices with entries in some field F, and K is some subgroup. Usually F is the finite field F q with q elements and n = 2.

We begin with the trace formula for finite abelian groups (i.e., Poisson’s summation formula) and an application to error-correcting codes. For non-abelian groups, we consider three main topics:

  • • an application of the pre-trace formula to find some isospectral non- isomorphic Schreier graphs with vertex sets GL(3, F2)/Г i , i = 1, 2, with Г1 consisting of matrices having first column equal to \(\left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \\ \end{array} } \right)\) and Г2 the transpose of Г1;

  • • the trace formula for GL(2, F q )/GL(2, F p ), where q = p r;

  • • the trace formula on the k-regular tree (which is a p-adic quotient space if k = p + 1) and Ihara’s theorem for the zeta function of a finite k- regular graph.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Allen, On the Spectra of Certain Graphs Arising from Finite Fields, Ph.D. Thesis, U.C. Santa Cruz, 1996.

    Google Scholar 

  2. J. Angel, Finite upper half planes over finite fields, Finite Fields and their Applics., 2 (1996), 62–86.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Angel, S. Poulos, A. Terras, C. Trimble, and E. Velasquez, Spherical functions and transforms on finite upper half planes: eigenvalues of the combinatorial Laplacian, uncertainty, chaos, Contemp. Math., 173 (1994), 15–70.

    Article  MathSciNet  Google Scholar 

  4. K. E. Aubert Et Al, Number Theory, Trace Formulas, and Discrete Groups, Academic Press, Boston, 1989.

    MATH  Google Scholar 

  5. R. Brooks, The spectral geometry of k-regular graphs, J. Analyse Math., 57 (1991), 120–151.

    MathSciNet  MATH  Google Scholar 

  6. R. Brooks, Some relations between graph theory and Riemann surfaces, Proc. Ashkelon Conf., to appear.

    Google Scholar 

  7. R. Brooks, R. Gornet, and W. Gustafson, Mutually isospectral Riemann surfaces, preprint.

    Google Scholar 

  8. P. Buser, Geometry and Spectra of Compact Riemann Surfaces, Birkhaüser, Boston, 1992.

    MATH  Google Scholar 

  9. P. Cartier, Harmonic analysis on trees, Proc. Symp. Pure Math., Vol.26, Amer. Math. Soc, Providence, 1973, 419–423.

    Article  MathSciNet  Google Scholar 

  10. I. Chavel, Eigenvalues in Riemannian Geometry, Academic, N.Y., 1984.

    Google Scholar 

  11. F. Chung and S.-T. Yau, A combinatorial trace formula, preprint.

    Google Scholar 

  12. P. Diaconis, Group Representations in Probability and Statistics, Inst. Math. Statistics, Haywood, CA, 1988.

    MATH  Google Scholar 

  13. J. Elstrodt, Die Selbergsche Spurformel für kompakte Riemannsche Flächen, Jber. d. Dt. Math.-Verein, 83 (1981), 45–77.

    MathSciNet  MATH  Google Scholar 

  14. R. Evans, Spherical functions for finite upper half planes with characteristic two, Finite Fields and their Applics., 1 (1995), 376–394.

    Article  MATH  Google Scholar 

  15. R. Evans, Character sums as orthogonal eigenfunctions of adjacency operators for Cayley graphs, Contemporary Math., 168 (1994), 33–50.

    Article  Google Scholar 

  16. A. Figà-Talamanca and C. Nebbia, Harmonic Analysis and Representation Theory for Groups acting on Homogeneous Trees, Cambridge U. Press, Cambridge, 1991.

    Book  MATH  Google Scholar 

  17. J. Friedman, On the second eigenvalue and random walks in random d-regular graphs, Combinatorica, 11 (1991), 331–362.

    Article  MathSciNet  MATH  Google Scholar 

  18. W. Fulton and J. Harris, Representation Theory: A First Course, Springer-Verlag, N.Y., 1991.

    Google Scholar 

  19. I.M. Gel’fand, M.I. Graev, and I.I. Piatetski-Shapiro, Representation Theory and Automorphic Functions, Academic, Boston, 1990.

    Google Scholar 

  20. C. Gordon and D. Webb, You can’t hear the shape of a drum, American Scientist, 84 (Jan.-Feb.,1996), 46–55.

    Google Scholar 

  21. C. Gordon, D. Webb, and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds, Inv. Math., 110 (1992), 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Greenspan, Discrete Models, Addison-Wesley, Reading, Mass, 1973.

    MATH  Google Scholar 

  23. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics, Springer-Verlag, N.Y., 1990.

    Google Scholar 

  24. K. Hashimoto, Zeta functions of finite graphs and representations ofp-adic groups, in K. Hashimoto and Y. Namikawa (Eds.), Automorphic Forms and Geometry of Arithmetic Varieties, Advanced Studies in Pure Math., Vol. 15, Academic, Boston, 1989, 211–280.

    Google Scholar 

  25. D.A. Hejhal, The Selberg trace formula and the Riemann zeta function, Duke Math. J., 43 (1976), 441–482.

    Article  MathSciNet  MATH  Google Scholar 

  26. D.A. Hejhal, The Selberg Trace Formula for PSL(2, ℝ), I, II, Lecture Notes in Math., 548, 1001, Springer-Verlag, N.Y., 1976, 1983.

    Google Scholar 

  27. D. A. Hejhal and B. Rackner, On the topography of Maass wave forms for PSL(2, ℤ), Experimental Math., 1 (1992), 275–305.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Kac, Can you hear the shape of a drum?, American Math. Monthly, 73 (1966), 1–23.

    Article  MATH  Google Scholar 

  29. M. Kac, Random walks and the theory of Brownian motion, Amer. Math. Monthly, 54 (1947), 369–391.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Katz, Estimates for Soto-andrade sums, J. für die Reine und Angew. Math., 438 (1993), 143–161.

    MATH  Google Scholar 

  31. N. Kurokawa and T. Sunada, (Eds.), Zeta Functions in Geometry, Advanced Studies in Pure Math., Vol. 21, Kinokuniya, Japan, 1992.

    Google Scholar 

  32. S. Lang, SL 2(ℝ), Addison-Wesley, Reading, Mass., 1975.

    Google Scholar 

  33. W. C. W. Li, A survey of Ramanujan graphs, preprint.

    Google Scholar 

  34. W. C. W. Li, Number Theory and its Applications, World Scientific, Singapore, 1996.

    Google Scholar 

  35. J.H. Van Lint, Introduction to Coding Theory, Springer-Verlag, N.Y., 1982.

    Google Scholar 

  36. A. Lubotzky, Discrete Groups, Expanding Graphs, and Invariant Measures, Birkhäuser, Basel, 1994.

    MATH  Google Scholar 

  37. A. Lubotzky, R. Phillips, and P. Sarnak, Ramanujan Graphs, Combinatorica, 8 (1988), 261–277.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. Lubotzky, Cayley graphs: eigenvalues, expanders and random walks, in Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., Vol. 218, Cambridge U. Press, 1995, 155–189.

    MathSciNet  Google Scholar 

  39. F. J. Macwilliams and N.J.A. Sloane, The Theory of Error-Correcting Codes, North Holland, Amsterdam, 1988.

    Google Scholar 

  40. H. P. Mckean, Kramers-Wannier duality for the 2-dimensional Ising model as an instance of the Poisson sum formula, J. Math. Phys., 5 (1964), 775–776.

    Article  MathSciNet  Google Scholar 

  41. M. Morgenstern, Existence and explicit constructions of q+1 regular Ramanujan graphs for every prime power q, J. Combinatorial Theory, Ser. B, 62 (1994), 44–62.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. Mukhophyay, Recent Developments in Switching Theory, Academic, N.Y., 1971.

    Google Scholar 

  43. R. Perlis, On the equation ζK(s) = ζK′(s), J. Number Theory, 9 (1977), 342–360.

    Article  MathSciNet  MATH  Google Scholar 

  44. I.I. Piatetski-Shapiro, Complex Representations of GL(2, K) For Finite Fields K, Contemp. Math., 16 (1983), American Math. Soc., Providence.

    Google Scholar 

  45. V. Pless, Introduction to the Theory of Error-Correcting Codes, Wiley, N.Y., 1989.

    Google Scholar 

  46. G. Quenell, Spectral diameter estimates for k-regular graphs, Advances in Math., 106 (1994), 122–148.

    Article  MathSciNet  MATH  Google Scholar 

  47. P. Sarnak Some Applications Of Modular Forms, Cambridge U. Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  48. P. Sarnak, The spacing distribution between zeros of zeta functions, lecture at this conference.

    Google Scholar 

  49. A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., 20 (1956), 47–87.

    MathSciNet  MATH  Google Scholar 

  50. J.-P. Serre, Trees, Springer-Verlag, N.Y., 1980.

    Google Scholar 

  51. J. Soto-andrade, Geometrical Ge’fand models, tensor quotients and Weil representations, Proc. Symp. Pure Math., 47, American Math. Soc, Providence, 1987, 305–316.

    Article  MathSciNet  Google Scholar 

  52. H. M. Stark, Modular forms and related objects, Canadian Math. Soc. Conf. Proc., 7 (1987), 421–455.

    Google Scholar 

  53. H. M. Stark, Fourier coefficients of Maass wave forms, in R.A. Rankin (Ed.), Modular Forms, Horwood, Chichester (distrib. Wiley), 1984, 263–269.

    Google Scholar 

  54. H. M. Stark, Galois theory, algebraic number theory, and zeta functions, in From Number Theory to Physics, M. Waldschmidt et al (Eds.), Springer-Verlag, Berlin, 1992, 313–393.

    Chapter  Google Scholar 

  55. H. M. Stark and A. Terras, Zeta functions of graphs and coverings, Advances in Math., 121 (1996), 124–165.

    Article  MathSciNet  MATH  Google Scholar 

  56. S. Sternberg, Group Theory and Physics, Cambridge U. Press, Cambridge, 1974.

    Google Scholar 

  57. T. Sunada, L-functions in geometry and some applications, Lecture Notes in Math., Vol. 1201, Springer-Verlag, N.Y., 1986, 266–284.

    Article  MathSciNet  Google Scholar 

  58. T. Sunada, Fundamental groups and Laplacians, Lecture Notes in Math., Vol.1339, Springer-Verlag, N.Y., 1988, 248–277.

    Article  MathSciNet  Google Scholar 

  59. T. Tamagawa, On Selberg’s trace formula, J. Fac. Sci. U. Tokyo, Sec. 1, 8 (1960), 363–386.

    MathSciNet  MATH  Google Scholar 

  60. A. Terras, Harmonic Analysis on Symmetric Spaces and Applications, I, II, Springer-Verlag, N.Y., 1985, 1988.

    Google Scholar 

  61. A. Terras, Fourier Analysis on Finite Groups and Applications, in preparation.

    Google Scholar 

  62. A. Terras, Survey of spectra of Laplacians on finite symmetric spaces, Experimental Math., 5 (1996), 15–32.

    Article  MathSciNet  MATH  Google Scholar 

  63. A. Terras, Noneuclidean harmonic analysis, S.I.A.M. Review, 24(1982), 159–193.

    MathSciNet  MATH  Google Scholar 

  64. C. Trimble, Ph.D. Thesis, U.C.S.D., 1993.

    Google Scholar 

  65. E. Velasquez, The heat kernel on finite upper half planes, preprint.

    Google Scholar 

  66. A. B. Venkov and A. M. Nikitin, The Selberg trace formula, Ramanujan graphs and some problems of mathematical physics, Petersburg Math. J., 5 (1994), No. 3, 419–484.

    MathSciNet  Google Scholar 

  67. M. F. Vignéras, Variétés riemanniennes isospectrales et non isométriques, Ann. of Math.(2), 112 (1980), 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  68. M. F. Vignéras, L’équation fonctionelle de la fonction zêta de Selberg de la groupe modulaire P S L (2, ℤ), Astérisque, 61 (1979), 235–249.

    MATH  Google Scholar 

  69. D. I. Wallace, The Selberg trace formula for SL(3, ℤ)\SL(3, ℝ)/SO(3, ℝ), Trans. Amer. Math. Soc., 345 (1994), 1–36.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Terras, A. (1999). A Survey of Discrete Trace Formulas. In: Hejhal, D.A., Friedman, J., Gutzwiller, M.C., Odlyzko, A.M. (eds) Emerging Applications of Number Theory. The IMA Volumes in Mathematics and its Applications, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1544-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1544-8_28

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7186-4

  • Online ISBN: 978-1-4612-1544-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics