Skip to main content

Energy Fluctuation Analysis in Integrable Billiards in Hyperbolic Geometry

  • Chapter
Emerging Applications of Number Theory

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 109))

Abstract

In this contribution I provide new examples of integrable billiard systems in hyperbolic geometry. In particular, I present one billiard system in the hyperbolic plane, called “Circular billiard in the Poincaré disc”, and one three-dimensional billiard, called “Spherical billiard in the Poincaré ball”. In each of the billiard systems, the quantization condition leads to transcendental equations for the energy eigen-values E n , which must be solved numerically. The energy eigen-values are statistically analyzed with respect to spectral rigidity and the normalized fluctuations about Weyl’s law. For comparison, some flat two- and three-dimensional billiard systems are also mentioned. The results found are in accordance with the semiclassical theory of the spectral rigidity of Berry, and the conjecture of Steiner et al. concerning the normalized fluctuations for integrable billiard systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Aurich, J. Bolte and F. Steiner, Universal Signatures of Quantum Chaos, Phys. Rev. Lett. 73 (1994), 1356–1359.

    Article  Google Scholar 

  2. R. Aurich and J. Marklof, Trace Formulae for Three-Dimensional Hyperbolic Lattices and Application to Strongly Chaotic Systems, Physica D 92 (1996), 101–129.

    MathSciNet  Google Scholar 

  3. R. Aurich, F. Scheffler and F. Steiner, On the Subtleties of Arithmetical Quantum Chaos, Phys. Rev. E 51 (1995), 4173–4202.

    Google Scholar 

  4. R. Aurich and F. Steiner, Energy-Level Statistics of the Hadamard-Gutzwiller Ensemble, Physica D 43 (1990), 155–180.

    MathSciNet  Google Scholar 

  5. A. BäCker, F. Steiner and P. Stifter, Spectral Statistics in the Quantized Cardioid Billiard, Phys. Rev. E 52 (1995), 2463–2472.

    Google Scholar 

  6. R. Balian and C. Bloch, Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain. I. Three-Dimensional Problem with Smooth Boundary Surface, Ann. Phys.(N.Y.) 60 (1970), 401–447. Asymptotic Evaluation of the Green’s Function for Large Quantum Numbers, Ann. Phys.(N.Y.) 63 (1971), 592-606; Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain. II. Electromagnetic Field. Riemannian Spaces, Ann. Phys.(N.Y.) 64 (1971), 271-307; Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain. II. Eigenfrequency Distributions, Ann. Phys.(N.Y.) 69 (1972), 76-160.

    Article  MathSciNet  MATH  Google Scholar 

  7. H.P. Baltes and E.R. Hilf, Spectra of Finite Systems (Bibliographisches Institut, Mannheim, 1976).

    Google Scholar 

  8. M.V. Berry, Semiclassical Theory of Spectral Rigidity, Proc. Roy. Soc. (London) A 400 (1985), 229–251.

    Google Scholar 

  9. M.V. Berry and M. Tabor, Level Clustering in the Regular Spectrum, Proc. Roy. Soc. (London) A 356 (1977), 375–394.

    Google Scholar 

  10. P.M. Bleher, On the Distribution of the Number of Lattice Points Inside a Family of Convex Ovals, Duke Math. J. 67 (1992), 461–481. P.M. Bleher, Z. Cheng, F.J. Dyson and J.L. Lebowitz, Distribution of the Error Term for the Number of Lattice points Inside a Shifted Circle, Commun. Math. Phys. 154 (1993), 433-469.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Bolte, Some Studies on Arithmetical Chaos in Classical and Quantum Mechanics, Int. J. Mod. Phys. B 7 (1993), 4451–4553.

    MathSciNet  Google Scholar 

  12. T.A. Brody, J. Flores, J.B. French, P.A. Mello and S.S.M. Wong, Random-Matrix Physics: Spectrum and Strength Fluctuations, Rev. Mod. Phys. 53 (1981), 385–479.

    Article  MathSciNet  Google Scholar 

  13. G. Casati, B.V. Chirikov and I. Guarneri, Energy-Level Statistics of Integrable Quantum Systems, Phys. Rev. Lett. 54 (1985), 1350–1353.

    Article  MathSciNet  Google Scholar 

  14. A. Csordas, R. Graham, P. Szépfalusy and G. Vattay, Transition from Poissonian to Gaussian-Orthogonal-Ensemble Level Statistics in a Modified Artin’s Billiard, Phys. Rev. E 49 (1994), 325–332. R.GRAHAM, R.HüBNER, P.SZéPFALUSY AND G.VATTAY, Level Statistics of a Noncompact Integrable Billiard, Phys. Rev. A 44 (1991), 7002-7015.

    Google Scholar 

  15. F.J. Dyson and M.L. Metha, Statistical Theory of the Energy Levels of Complex Systems. IV, J. Math. Phys. 4 (1963), 701–712.

    Article  MATH  Google Scholar 

  16. I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980).

    MATH  Google Scholar 

  17. C. Grosche, The Path Integral on the Poincaré Disc, the Poincaré Upper Half-Plane and on the Hyperbolic Strip, Fortschr. Phys. 38 (1990), 531–569.

    Article  MathSciNet  Google Scholar 

  18. C. Grosche, Energy-Level Statistics of an Integrable Billiard System in a Rectangle in the Hyperbolic Plane, J. Phys. A: Math. Gen. 25 (1992), 4573–4594.

    Article  MathSciNet  MATH  Google Scholar 

  19. C. Grosche, Path Integration via Summation of Perturbation Expansions and Application to Totally Reflecting Boundaries and Potential Steps, Phys. Rev. Lett. 71 (1993), 1–4.

    Article  MathSciNet  Google Scholar 

  20. C. Grosche, δ-Function Perturbations and Boundary Problems by Path Integration, Ann. Physik 2 (1993), 557–589.

    Article  MathSciNet  Google Scholar 

  21. C. Grosche, Path Integrals, Hyperbolic Spaces and Selberg Trace Formulæ (World Scientific, Singapore, 1996).

    Book  MATH  Google Scholar 

  22. M.C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, Berlin, 1990).

    MATH  Google Scholar 

  23. R.U. Haq, A. Pandey and O. Bohigas, Fluctuation Properties of Nuclear Energy Levels: Do Theory and Experiment Agree? Phys. Rev. Lett. 48 (1982), 1086–1089.

    Article  Google Scholar 

  24. D.R. Heath-Brown, The Distribution and Moments of the Error Term in the Dirichlet Divisor Problem, Acta Arithmetica 40 (1992), 389–415.

    MathSciNet  Google Scholar 

  25. D.A. Hejhal, The Selberg Trace Formula for PSL(2, ℝ) I, Lecture Notes in Mathematics 548 (Springer, Berlin, 1976).

    Google Scholar 

  26. H. Kleinert and I. Mustapic, Summing the Spectral Representations of Pöschl-Teller and Rosen-Morse Fixed-Energy Amplitudes, J. Math. Phys. 33 (1992), 643–662.

    Article  MathSciNet  Google Scholar 

  27. I. Kim, Die Spurformeln für integrable und pseudointegrable Systeme, Diploma Thesis, Hamburg University (1994), p. 113 (unpublished).

    Google Scholar 

  28. D.V. Kosygin, A.A. Minasov and Ya.G. Sinai, Statistical Properties of the Spectra of Laplace-Beltrami Operators on Liouville Surfaces, Russ. Math. Surveys 48 (1993), 1–142.

    Article  MathSciNet  Google Scholar 

  29. R. Schubert, The Trace Formula and the Distribution of Eigenvalues of Schrödinger Operators on Manifolds all of whose Geodesics are Closed, DESY Report, DESY 95-090, May 1995, p. 12.

    Google Scholar 

  30. A. Selberg, Harmonic Analysis and Discontinuous Groups in Weakly Symmetric Riemannian Spaces with Application to Dirichlet Series, J. Indian Math. Soc. 20 (1956), 47–87.

    MathSciNet  MATH  Google Scholar 

  31. M. Sieber, The Hyperbola Billiard: A Model for the Semiclassical Quantization of Chaotic Systems, DESY Report, DESY 91-030, April 1991, Ph.D. Thesis (Hamburg University, 1991), p. 101.

    Google Scholar 

  32. M. Sieber, U. Smilansky, S.C. Craegh and R.G. Littlejohn, Non-Generic Spectral Statistics in the Quantized Stadium Billiard, J. Phys. A: Math. Gen. 26 (1993), 6217–6230.

    Article  MATH  Google Scholar 

  33. M. Sieber and F. Steiner, Generalized Periodic-Orbit Sum Rules for Strongly Chaotic Systems, Phys. Lett. A 144 (1990), 159–163.

    MathSciNet  Google Scholar 

  34. F. Steiner, Quantum Chaos, In “Schlaglichter der Forschung. Zum 75. Jahrestag der Universität Hamburg 1994”, ed.: R. Ansorge (Reimer, Berlin, 1994), 543–564.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grosche, C. (1999). Energy Fluctuation Analysis in Integrable Billiards in Hyperbolic Geometry. In: Hejhal, D.A., Friedman, J., Gutzwiller, M.C., Odlyzko, A.M. (eds) Emerging Applications of Number Theory. The IMA Volumes in Mathematics and its Applications, vol 109. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1544-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1544-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7186-4

  • Online ISBN: 978-1-4612-1544-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics