Skip to main content

A Hierarchical Genetic Algorithm for System Identification and Curve Fitting with a Supercomputer Implementation

  • Chapter
Book cover Evolutionary Algorithms

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 111))

Abstract

This paper describes a hierarchical genetic algorithm (GA) framework for identifying closed form functions for multi-variate data sets. The hierarchy begins with an upper GA that searches for appropriate functional forms given a user defined set of primitives and the candidate independent variables. Each functional form is encoded as a tree structure, where variables, coefficients and functional primitives are linked. The functional forms are sent to the second part of the hierarchy, the lower GA, that optimizes the coefficients of the function according to the data set and the chosen error metric. To avoid undue complication of the functional form identified by the upper GA, a penalty function is used in the calculation of fitness. Because of the computational effort required for this sequential optimization of each candidate function, the system has been implemented on a Cray supercomputer. The GA code was vectorized for parallel processing of 128 array elements, which greatly speeded the calculation of fitness. The system is demonstrated on five data sets from the literature. It is shown that this hierarchical GA framework identifies functions which fit the data extremely well, are reasonable in functional form, and interpolate and extrapolate well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angeline, Peter J., Two self-adaptive crossover operators for genetic programming, Advances in Genetic Programming Volume II (editors: Peter J. Angeline and Kenneth E. Kinnear, Jr.), MIT Press, Cambridge MA, 89–109, 1996.

    Google Scholar 

  2. Bäck, T. and Schwefel, H. P., An overview of evolutionary algorithms for parameter optimization, Evolutionary Computation, 1, 1–23, 1993.

    Article  Google Scholar 

  3. Bastian, A. and Gasos, J., A type I structure identification approach using feed forward neural networks, IEEE International Conference on Neural Networks, 5 (of 7), 3256–3260, 1994.

    Google Scholar 

  4. Bleasdale, J. K. A. and Nelder, J. A., Plant population and crop yield, Nature, 188, 342, 1960.

    Article  Google Scholar 

  5. Box, G. E. and Jenkins, G. M., Time Series Analysis: Forecasting and Control, Holden-Day, San Francisco, CA, 1970.

    MATH  Google Scholar 

  6. Coin, D. W. and Turner-Jackson, B. and Smith, A. E., Static neural network process models: considerations and case studies,International Journal of Production Research, 36 in print, 1998.

    Google Scholar 

  7. Collins, J. S., A regression analysis program incorporating heuristic term selection, Machine Intelligence, Donald Michi, Editor, American Elsevier Company, New York NY, 1968.

    Google Scholar 

  8. Cramer, N. L., A representation for the adaptive generation of simple sequential programs, Proceedings of an International Conference on Genetic Algorithms and Their Applications, 183–187, 1985.

    Google Scholar 

  9. Dallemand, J. E., Steepwise regression program on the IBM 70, Technical Report of General Motors Research Laboratories, 1958.

    Google Scholar 

  10. Farazdaghi, H. and Harris, P. M., Plant competition and crop yield, Nature, 271, 289–290, 1968.

    Article  Google Scholar 

  11. Friedman, J., Multivariate adaptive regression splines, Department of Statistics Technical Report 102, Stanford University, 1988 (revised 1990).

    Google Scholar 

  12. Fujko, C. and Dickinson, J., Using the genetic algorithm to generate LISP source code to solve prisoner’s dilemma, Genetic Algorithm and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 236–240, 1987.

    Google Scholar 

  13. Gallant, A. R., Nonlinear Statistical Models, John Wiley and Sons, New York, 1987.

    Book  MATH  Google Scholar 

  14. Geman S. and Bienenstock, E., Neural networks and the bias/variance dilemma, Computation, 4, 1–58, 1992.

    Google Scholar 

  15. Gulsen, M., Smith, A. E. and Tate, D. M., Genetic algorithm approach to curve fitting, International Journal of Production Research, 33, 1911–1923, 1995.

    Article  MATH  Google Scholar 

  16. Holliday, R., Plant population and crop yield, Field Crop Abstracts, 13, 159–167, 247–254, 1960.

    Google Scholar 

  17. Karr, C. L., Stanley D. A., and Scheiner B. J., Genetic algorithm applied to least squares curve fitting, U.S. Bureau of Mines Report of Investigations 9339, 1991.

    Google Scholar 

  18. Koza, J. R., Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge MA, 162–169, 1992.

    MATH  Google Scholar 

  19. Koza, J. R., Genetic Programming: Automatic Discovery of Reusable Programs, MIT Press, Cambridge MA, 1994.

    MATH  Google Scholar 

  20. Mühlenbein, H. and Schlierkamp-Voosen, D., Predictive models for the breeder genetic algorithm. I. Continuous parameter optimization, Evolutionary Computation, 1, 25–49, 1993.

    Article  Google Scholar 

  21. Nash, J. C. and Walker-Smith, M., Nonlinear Parameter Estimation: An Integrated System in BASIC, Marcel Dekker, New York, 1987.

    MATH  Google Scholar 

  22. Park, Y. R., Murray, T. J. and Chen, C., Predicting sun spots using a layered perceptron neural network, IEEE Transactions on Neural Networks, 7 501505, 1996.

    Google Scholar 

  23. Rogers, D., G/Splines: A hybrid of Friedman’s multivariate adaptive regression splines (MARS) algorithms with Holland’s genetic algorithm, Proceedings of the Fourth International Conference on Genetic Algorithms, 384–391, 1991.

    Google Scholar 

  24. Seber, G. A. F. and Wild, C. J., Nonlinear Regression, John Wiley and Sons, New York, 1989.

    Book  MATH  Google Scholar 

  25. Stiglek, S. M., History of Statistics: The Measurement of Uncertainty Before 1900, Harvard University Press, Cambridge MA, 1986.

    Google Scholar 

  26. Sugeno, M., and Yasukawa, T., A fuzzy-logic-based approach to qualitative modeling, IEEE Transactions on Fuzzy Systems, 1, 7–31, 1993.

    Article  Google Scholar 

  27. Villareal, J. and Baffes, P., Sunspot prediction using neural networks, University of Alabama Neural Network Workshop Report, 1990.

    Google Scholar 

  28. Westervelt, F., Automatic System Simulation Programming, unpublished Ph.D. Dissertation, University of Michigan, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gulsen, M., Smith, A.E. (1999). A Hierarchical Genetic Algorithm for System Identification and Curve Fitting with a Supercomputer Implementation. In: Davis, L.D., De Jong, K., Vose, M.D., Whitley, L.D. (eds) Evolutionary Algorithms. The IMA Volumes in Mathematics and its Applications, vol 111. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1542-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1542-4_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7185-7

  • Online ISBN: 978-1-4612-1542-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics