The Internal Critical Level Concept of Nonspecific Toxicity

  • Yupadee Chaisuksant
  • Qiming Yu
  • Des W. Connell
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 162)


Toxicity of chemicals to organisms may be classified into two basic types: specific (or reactive or chemical) and nonspecific (or nonreactive or physical) (37;137). Specific toxicity results from a specific chemical reaction mechanism such as a reaction with an enzyme or the inhibition of a metabolic pathway in an organism (13). Toxicants causing this type of toxicity include heavy metal ions, organometallic compounds, and other chemically reactive agents (37). Nonspecific toxicity, often described as narcosis, refers to any reversible decrease in the physiological functions of an organism. This mode of toxic action is directly associated with the quantity, rather than the chemical structure, of the toxicants involved (13;137). Nonspecific toxicity has been found to be the predominant mode of toxic action of industrial organic chemicals acting on aquatic organisms, especially fish. A variety of organic compounds act as nonspecific toxicants to aquatic organisms, including aliphatic and aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, weak acids and bases, and some aliphatic nitrocompounds (186). These compounds have also been described as depressants because of their use as hypnotics and general anaesthetics in higher organisms and humans (4). In small doses they induce sleep and in larger doses a lack of sensation-awareness in the brain to any change in the body (4;43).


Lipid Bilayer Aquatic Organism Partial Molar Volume Toxic Action Bioconcentration Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abernethy SG, Mackay D, McCarty LS (1988) Volume fraction correlation for narcosis in aquatic organisms: the key role of partitioning. Environ Toxicol Chem 7:469–481.CrossRefGoogle Scholar
  2. Adey G, Wardley-Smith B, White D (1976) Mechanism of inhibition of bacterial luciferase by anesthetics. Life Sci 17:1849–1854.CrossRefGoogle Scholar
  3. Ahlers J, Cascorbi I, Foret M, Gies A, Kohler M, Pauli W, Rosick E (1991) Interaction with functional membrane proteins—a common mechanism of toxicity for lipophilic environmental chemicals? Comp Biochem Physiol 1000:111–113.Google Scholar
  4. Albert A (1968) Selective Toxicity and Related Topics, 3rd ed. Methuen, London, pp 436–449.Google Scholar
  5. Barber MC, Suarez LA, Lassiter RR (1988) Modeling bioconcentration of nonpolar organic pollutants by fish. Environ Toxicol Chem 7:545–558.CrossRefGoogle Scholar
  6. Barron MG, Stehly GR, Hayton WL (1990) Pharmacokinetic modeling in aquatic animals. I. Model and concepts. Aquat Toxicol 18:61–85.CrossRefGoogle Scholar
  7. Bamthouse LW, Suter GW II, Bartell SM (1988) Quantifying risk of toxic chemicals to aquatic populations and ecosystems. Chemosphere 17:1487–1492.CrossRefGoogle Scholar
  8. Belfroid A, Seinen W, van Gestel K, Hermens J (1993a) The acute toxicity of chlorobenzenes for earthworms (Eisenia andrei) in different exposure systems. Chemosphere 26:2265–2277.CrossRefGoogle Scholar
  9. Belfroid A, van Wezel A, Sikkenk M, van Gestel K, Seinen W, Hermens J (1993b) The toxicokinetic behavior of chlorobenzenes in earthworms (Eisenia andrei): experiments in water. Ecotoxicol Environ Saf 25:154–165.CrossRefGoogle Scholar
  10. Bell RM, Burns DJ (1991) Lipid activation of protein kinase C. J Biol Chem 266:4661–4664.PubMedGoogle Scholar
  11. Beyer WN, Heinz GH, Redmon-Norwood AW (eds) (1996) Environmental Contaminations in Wildlife: Interpreting Tissue Concentrations. SETAC Special Publication Series. Lewis, Boca Raton.Google Scholar
  12. Bishop WE, Maki AW (1980) A critical comparison of two bioconcentration test methods. In: Eaton JG, Parrish PR, Hendricks AC (eds) Aquatic Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia, pp 61–72.CrossRefGoogle Scholar
  13. Blum DJW, Speece RE (1990) Determining chemical toxicity to aquatic species: the use of QSARs and surrogate organisms. Environ Sci Technol 24:284–293.CrossRefGoogle Scholar
  14. Bobra A, Shiu WY, Mackay D (1985) Quantitative structure—activity relationships for the acute toxicity of chlorobenzenes to Daphnia magna. Environ Toxicol Chem 4: 297–305.Google Scholar
  15. Boggs JM, Roth SH, Yoon T, Hsia JC (1976a) Site and mechanism of anesthetic action. II. Pressure effect on the nerve conduction-blocking activity of a spin-labeled anesthetic. Mol Pharmacol 12:136–143.Google Scholar
  16. Boggs JM, Yoon T, Hsia JC (1976b) Site and mechanism of anesthetic action. I. Effect of anesthetics and pressure on fluidity of spin-labeled lipid vesicles. Mol Pharmacol 12:127–135.Google Scholar
  17. Bradbury SP, Symonik DM, Coats JR, Atchison GL (1987) Toxicity of fenvalerate and its constituent isomers to the fathead minnow Pimephales promelas and bluegill Lepomis macrochirus. Bull Environ Contam Toxicol 38:727–735.PubMedCrossRefGoogle Scholar
  18. Bradbury SP, Henry TR, Niemi GJ, Carlson RW, Snarski VM (1989) Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish: Part 3. Polar narcotics. Environ Toxicol Chem 8:247–261.Google Scholar
  19. Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger 0 (1984) Bioaccumulation of superhydrophilic chemicals in fish. Toxicol Environ Chem 7:173–189.CrossRefGoogle Scholar
  20. Bysshe SE (1990) Bioconcentration factor in aquatic organisms. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Handbook of Chemical Property Estimation Methods: Environmental Behavior of Oganic Compounds, 3rd Ed. American Chemical Society, Washington, DC, pp 5–1–5–30.Google Scholar
  21. Calamari D, Vighi M (1988) Experiences on QSARs and evaluative models in ecotoxicology. Chemosphere 17:1539–1549.CrossRefGoogle Scholar
  22. Call D, Brooke L, Knuth M, Poirier S, Hoglund M (1985) Fish subchronic toxicity prediction model for industrial organic chemicals that produce narcosis. Environ Toxicol Chem 4:335–341.CrossRefGoogle Scholar
  23. Carlson AR, Kosian PA (1987) Toxicity of chlorinated benzenes to fathead minnow. Arch Environ Contam Toxicol 16:129–135.PubMedCrossRefGoogle Scholar
  24. Chaisuksant Y, Yu Q, Connell DW (1997) Internal lethal concentrations of halobenzenes with fish (Gambusia affinis). Ecotoxicol Environ Saf 37:66–75.PubMedCrossRefGoogle Scholar
  25. Chin JH, Trudell JR, Cohen EN (1976) The compression-ordering and solubility-disordering effects of high pressure gases on phospholipid bilayers. Life Sci 18:489–498.PubMedCrossRefGoogle Scholar
  26. Chiou CT (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ Sci Technol 19:57–62.CrossRefGoogle Scholar
  27. Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol 11:475–478.CrossRefGoogle Scholar
  28. Clark AJ (1937) The action of narcotics on enzymes and cells. J Chem Soc Faraday Trans 33:1057–1061.CrossRefGoogle Scholar
  29. Clark KE, Gobas FAPC, Mackay D (1990) Model of organic chemical uptake and clearance by fish from food and water. Environ Sci Technol 24:1203–1213.CrossRefGoogle Scholar
  30. Connell DW (1988) Bioaccumulation behaviour of persistent organic chemicals with aquatic organisms. Rev Environ Contam Toxicol 101:117–154.CrossRefGoogle Scholar
  31. Connell DW (1990) Bioaccumulation of Xenobiotic Compounds. CRC Press, Boca Raton.Google Scholar
  32. Connell DW (1994) The octanol-water partition coefficient. In: Carlow P (ed) Handbook of Ecotoxicology, Vol. 2, Blackwell, Oxford, pp 311–320.Google Scholar
  33. Connell DW, Hawker DW (1988) Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotoxicol Environ Saf 16:242–257.PubMedCrossRefGoogle Scholar
  34. Connell DW, Markwell R (1992) Mechanism and prediction of nonspecific toxicity to fish using bioconcentration characteristics. Ecotoxicol Environ Saf 24:247–265.PubMedCrossRefGoogle Scholar
  35. Connell DW, Schüürmann G (1988) Evaluation of various molecular parameters as predictors of bioconcentration in fish. Ecotoxicol Environ Saf 15:324–335.PubMedCrossRefGoogle Scholar
  36. Connolly JP (1985) Predicting single-species toxicity in nature water systems. Environ Toxicol Chem 4:573–782.CrossRefGoogle Scholar
  37. Crisp DJ, Christie AO, Ghobashy AFA (1967) Narcotic and toxic action of organic compounds on barnacle larvae. Comp Biochem Physiol 22:629–649.CrossRefGoogle Scholar
  38. Davies RP, Dobbs AJ (1984) The prediction of bioconcentration in fish. Water Res 18: 1253–1262.CrossRefGoogle Scholar
  39. de Bruijn J, Yedema E, Seinen W, Hermens JLM (1991) Lethal body burdens of four organophosphorous pesticides in the guppy (Poecilia reticulata). Aquat Toxicol 20: 111–122.CrossRefGoogle Scholar
  40. Deneer JW, Sinnige TL, Seinen W, Hermens JLM (1987) Quantitative structure-activity relationships for the toxicity and bioconcentration of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquat Toxicol 10:115–129.CrossRefGoogle Scholar
  41. de Wolf W, Opperhuizen A, Seinen W, Hermens JLM (1991) Influence of survival time on the lethal body burden of 2,3,4,5-tetrachloroaniline in the guppy. Sci Total Environ 109,110:457–459.PubMedCrossRefGoogle Scholar
  42. de Wolf W, Seinen W, Opperhuizen A, Hermens JLM (1992) Bioconcentration and lethal body burden of 2,3,4,5-tetrachloroaniline in guppy Poecilia reticulata. Chemosphere 25:853–863.CrossRefGoogle Scholar
  43. Dluzewski AR, Halsey MJ, Simmonds AC (1983) Membrane interactions with general and local anaesthetics: a review of molecular hypotheses of anaesthesia. Mol Aspects Med 6:459–573.Google Scholar
  44. Doe KG, Ernst WR, Parker WR, Julien GRJ, Hennigar PA (1988) Influence of pH on the acute lethality of fenitrothion, 2,4-D and aminocarb, and some pH-altered sublethal effects of aminocarb on rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 45:287–293.CrossRefGoogle Scholar
  45. Donkin P, Widdows J, Evans SV, Brinsley MD (1991) QSARs for the sublethal responses of marine mussels (Mytilus edulis). Sci Total Environ 109,110:461–471.PubMedCrossRefGoogle Scholar
  46. Duffus JH (1980) Assessment of toxicity. In: Duffus JH (ed) Environmental Toxicology. Resource and Environmental Science Series. Edward Arnold, London, pp 1–12.Google Scholar
  47. Elliot JR, Haydon DA (1989) The actions of neutral anesthetics on ion conductances of nerve membranes. Biochim Biophys Acta 988:257–286.CrossRefGoogle Scholar
  48. El-Magharabi E, Eckenhoff RG, Shuman H (1992) Saturable binding of halothane to rat brain synaptosomes. Proc Nail Acad Sci USA 89:4329–4332.CrossRefGoogle Scholar
  49. Eyring H, Woodbury JW, D’Arrigs JS (1973) A molecular mechanism of general anesthesia. Anesthesiology 38:415–424.PubMedCrossRefGoogle Scholar
  50. Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc London Ser B 127:387–404.CrossRefGoogle Scholar
  51. Fitzgerald DG, Warner KA, Lanno RP, Dixon DG (1996) Assessing the effects of modifying factors on pentachlorophenol toxicity to earthworms: applications of body residues. Environ Toxicol Chem 15:2299–2304.CrossRefGoogle Scholar
  52. Franks NP, Lieb WR (1978) Where do general anesthetics act? Nature (Lond) 274:339–341.PubMedCrossRefGoogle Scholar
  53. Franks NP, Lieb WR (1981) Is membrane expansion relevant to anesthesia? Nature (Lond) 29:248–251.CrossRefGoogle Scholar
  54. Franks NP, Lieb WR (1982) Molecular mechanisms of general anesthesia. Nature (Lond) 300:487–493.PubMedCrossRefGoogle Scholar
  55. Franks NP, Lieb WR (1984) Do general anesthetics act by competitive binding to specific receptors? Nature (Lond) 310:599–601.PubMedCrossRefGoogle Scholar
  56. Franks NP, Lieb WR (1985) Mapping of general anesthetics target sites provides a molecular basis for cutoff effects. Nature (Lond) 316:349–351.PubMedCrossRefGoogle Scholar
  57. Franks NP, Lieb WR (1986) Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci USA 83:5116–5120.PubMedCrossRefGoogle Scholar
  58. Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anesthesia. Nature (Lond) 367:607–614.PubMedCrossRefGoogle Scholar
  59. Galassi S, Mingazzini M, Viganb L, Cesarco D, Tosato ML (1988) Approaches to modeling toxic responses of aquatic organisms to aromatic hydrocarbons. Ecotoxicol Environ Saf 16:158–169.PubMedCrossRefGoogle Scholar
  60. Gavezzotti A (1983) The calculation of molecular volumes and the use of volume analysis in the investigation of structure media and of solid-state organic reactivity. J Am Chem Soc 105:5220–5225.CrossRefGoogle Scholar
  61. Geyer H, Sheehan P, Kotsias D, Freitag D, Korte F (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 11:1121–1134.CrossRefGoogle Scholar
  62. Geyer H, Scheunert I, Brüggemann R., Steinberg C, Korte F, Kettrup A (1991) QSAR for organic chemical bioconcentration in Daphnia algae, and mussels. Sci Total Environ 109,110:387–394.PubMedCrossRefGoogle Scholar
  63. Halsey MJ, Wardley-Smith B (1975) Pressure reversal of narcosis produced by anaesthetics, narcotics and tranquilizers. Nature (Lond) 257:811–813.PubMedCrossRefGoogle Scholar
  64. Hamelink JL (1977) Current bioconcentration test methods and theory. In: Mayer FL, Hamelink JL (eds) Aquatic Toxicology and Hazard Evaluation. ASTM STP 634. American Society for Testing and Materials, Philadelphia, pp 149–161.CrossRefGoogle Scholar
  65. Hamelink JL, Specie A (1977) Fish and chemical: the process of accumulation. Annu Rev Pharmacol Toxicol 17:167–177.PubMedCrossRefGoogle Scholar
  66. Hamelink JL, Waybrant RC, Ball C (1971) A proposal: exchange equilibria control the degree chlorinated hydrocarbons are biologically magnified in lentic environments. Trans Am Fish Soc 100:207–214.CrossRefGoogle Scholar
  67. Hansch C (1969) A quantitative approach to biochemical structure—activity relationships. Acc Chem Res 2:232–240.CrossRefGoogle Scholar
  68. Hansch C, Dunn WJ III (1972) Linear relationships between lipophilic character and biological activity of drugs. J Pharm Sci 61:1–19.PubMedCrossRefGoogle Scholar
  69. Hansch C, Fujita T (1964) A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626.CrossRefGoogle Scholar
  70. Hansch C, Kim D, Leo AJ, Novellino E, Silipo C, Vittoria A (1989) Toward a quantitative comparative toxicology of organic compounds. CRC Crit Rev Toxicol 19:185–226.CrossRefGoogle Scholar
  71. Hansen DJ Goodman LR, Cripe GM, MaCanly SF (1986) Early life-stage toxicity test methods for gulf toadfish (Opsanus beta) and results using chlorpyrifos. Ecotoxicol Environ Saf 11:15–22.PubMedCrossRefGoogle Scholar
  72. Hawker DW, Connell DW (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol Environ Saf 11:184–197.PubMedCrossRefGoogle Scholar
  73. Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8: 381–391.CrossRefGoogle Scholar
  74. Haydon DA, Hendry BM, Levinson SR (1977) The molecular mechanisms of anesthesia. Nature (Lond) 268:356–358.CrossRefGoogle Scholar
  75. Hektoen H, Ingebrigtsen K, Brevik EM, Oehme M (1992) Interspecies differences in tissue distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin between cod (Gadus mor-hua) and rainbow trout (Oncorhynchus mykiss). Chemosphere 24:581–587.CrossRefGoogle Scholar
  76. Hendriks Ai (1995) Modeling response of species to microcontaminants: comparative ecotoxicology by (sub)lethal body burdens as a function of species size and partition ratio of chemicals. Ecotoxicol Environ Saf 32:103–130.CrossRefGoogle Scholar
  77. Hermens J, Canton H, Janssen P, Jong RD (1984a) Quantitative structure—activity relationships and toxicity studies of mixtures of chemicals with anesthetic potency: acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154.CrossRefGoogle Scholar
  78. Hermens J, Leeuwangh P, Musch A (1984b) Quantitative structure—activity relationships and mixture toxicity studies of chloro-and alkylanilines at an acute lethal toxicity level to the guppy (Poecilia reticulata). Ecotoxicol Environ Saf 8:388–394.CrossRefGoogle Scholar
  79. Hermens J Könemann H, Leeuwangh P, Musch A (1985) Quantitative structure—activity relationships in aquatic toxicity studies of chemicals and complex mixtures of chemicals. Environ Toxicol Chem 4:273–279.CrossRefGoogle Scholar
  80. Hubbell WL, McConnell HM (1968) Spin-labelled erythrocyte membranes. Biochim Biophys Acta 219:415–427.Google Scholar
  81. Ikemoto Y, Motoba K, Suzuki T, Uchida M (1992) Quantitative structure—activity relationships of nonspecific and specific toxicants in several organism species. Environ Toxicol Chem 11:931–939.CrossRefGoogle Scholar
  82. Isnard P, Lambert S (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. Chemosphere 17:21–34.CrossRefGoogle Scholar
  83. Jain MK, Wu NY-M, Wray LV (1975) Drug-induced phase change in lipid bilayer as possible mode of action of membrane expanding drugs. Nature (Lond) 255:494–495.PubMedCrossRefGoogle Scholar
  84. Johnson FH, Brown D, Marsland D (1942) A basic mechanism in the biological effects of temperature, pressure and narcotics. Science 95:200–203.PubMedCrossRefGoogle Scholar
  85. Johnson FH, Flagler EA (1950) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112:91–92.PubMedCrossRefGoogle Scholar
  86. Johnson SM, Bangham AD (1969) The action of anesthetics on phospholipid membrane. Biochim Biophys Acta 193:92–104.PubMedCrossRefGoogle Scholar
  87. Johnson SM, Miller KM (1970) Antagonism of pressure and anesthesia. Nature (Lond) 228:75–76.CrossRefGoogle Scholar
  88. Jorgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann MJ (1991a) A general model for the interaction of foreign molecules with lipid membranes: drugs and anesthetics. Biochim Biophys Acta 1062:227–238.CrossRefGoogle Scholar
  89. Jorgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann MJ (1991b) The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anesthetics and insecticides. Biochim Biophys Acta 1067:241–253.CrossRefGoogle Scholar
  90. Kenega EE, Goring CA (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota. In: Eaton JG, Parrish PR, Hendrick AC (eds) Aquatic Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia, pp 78–115.CrossRefGoogle Scholar
  91. Kier LB, Hall LH (1986) Molecular Connectivity in Structure—Activity Analysis. Wiley, New York, pp 1–23.Google Scholar
  92. Kita Y, Bennett LJ, Miller KW (1981) The partial molar volumes of anesthetics in lipid bilayers. Biochim Biophys Acta 647:130–139.PubMedCrossRefGoogle Scholar
  93. Kleeman JM, Olson JR, Peterson RE (1988) Species differences in 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and biotransformation in fish. Fundam Appl Toxicol 10:206–213.PubMedCrossRefGoogle Scholar
  94. Kobayashi K, Akitake H, Manabe K (1979) Relation between toxicity and accumulation of various chlorophenols in goldfish. Bull Jpn Soc Sci Fish 45:173–175.CrossRefGoogle Scholar
  95. Könemann H (1981) Quantitative structure—activity relationships in fish toxicity studies. Part 1: Relationship for 50 industrial pollutants. Toxicology 19:209–221.PubMedCrossRefGoogle Scholar
  96. Könemann H, Musch A (1981) Quantitative structure—activity relationships in fish toxicity studies Part 2: The influence of pH on the QSAR of chlorophenols. Toxicology 19:223–228.PubMedCrossRefGoogle Scholar
  97. Könemann H, van Leeuwen K (1980) Toxicokinetic in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere 9:3–19.CrossRefGoogle Scholar
  98. Landrum PF (1988) Toxicokinetics of organic xenobiotics in the amphipod Pontoporeia hoyi: role of physiological and environmental variables. Aquat Toxicol 12:245–271.CrossRefGoogle Scholar
  99. Leahy DE (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities. J Pharm Sci 75:629–636.PubMedCrossRefGoogle Scholar
  100. Leegwater DC (1989) QSAR-analysis of acute toxicity of industrial pollutants to the guppy using molecular connectivity indices. Aquat Toxicol 15:157–168.CrossRefGoogle Scholar
  101. Lever MJ, Miller KW, Paton WDM, Smith EB (1971) Pressure reversal of anesthesia. Nature (Lond) 231:368–371.PubMedCrossRefGoogle Scholar
  102. Lieb WR, Kovalycsik M, Mendelsohn R (1982) Do clinical levels of general anesthetics affect lipid bilayers? Evidence from Raman scattering. Biochim Biophys Acta 688: 388–398.PubMedCrossRefGoogle Scholar
  103. Lipnick RL (1989a) Hans Horst Meyer and the lipoid theory of narcosis. Trends Phannacol Sci 10:265–269.CrossRefGoogle Scholar
  104. Lipnick RL (1989b) Narcosis, electrophile and proelectrophile toxicity mechanisms: application of SAR and QSAR. Environ Toxicol Chem 8:1–12.Google Scholar
  105. Lipnick RL (1995) Structure—activity relationships. In: Rand GM (ed) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. 2nd Ed. Taylor & Francis, Washington, DC, pp 609–655.Google Scholar
  106. MacDonald AG (1978) A dilatometric investigation of the effects of general anesthetics, alcohols and hydrostatic pressure on the phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine. Biochim Biophys Acta 507:26–37.PubMedCrossRefGoogle Scholar
  107. Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16:274–278.PubMedCrossRefGoogle Scholar
  108. Mackay D, Hughes AI (1984) Three-parameter equation describing the uptake of organic compounds by fish. Environ Sci Technol 18:439–444.PubMedCrossRefGoogle Scholar
  109. Mackay D, Hughes AI, Paterson S (1985) A model for p-aminobenzoic acid ester narcosis in goldfish. J Pharm Sci 74:1236–1238.PubMedCrossRefGoogle Scholar
  110. Mackay D, Puig H, McCarty LS (1992) An equation describing the time course and variability in uptake and toxicity of narcotic chemicals to fish. Environ Toxicol Chem 11:941–951.CrossRefGoogle Scholar
  111. Mancini JL (1983) A method for calculating effects, on aquatic organisms, of time varying concentrations. Water Res 17:1355–1362.CrossRefGoogle Scholar
  112. McCarty LS (1986) The relationship between aquatic toxicity QSARs and bioconcentration for some organic chemicals. Environ Toxicol Chem 5:1071–1080.CrossRefGoogle Scholar
  113. McCarty LC (1987) Relationship between toxicity and bioconcentration for some organic chemicals. I. Examination of the relationship. In: Kaiser KLE (ed) QSAR in Environmental Toxicology, Vol. II, D. Reidel, Dordrecht, The Netherlands, pp 207–220.CrossRefGoogle Scholar
  114. McCarty LS (1991) Toxicant body residues: implications for aquatic bioassays with some organic chemicals. In: Mayer MA, Barron MG (eds) Aquatic Toxicology and Risk Assessment, Vol. 14. ASTM STP 1124. American Society for Testing and Materials, Philadelphia, pp 183–192.CrossRefGoogle Scholar
  115. McCarty LS, Hodson PV, Graig GR, Kaiser SLE (1985) The use of quantitative structure—activity relationships to predict the acute and chronic toxicities of organic chemicals to fish. Environ Toxicol Chem 4:595–606.CrossRefGoogle Scholar
  116. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27:1719–1727.CrossRefGoogle Scholar
  117. McCarty LS, Mackay D, Smith AD, Ozburn GW, Dixon DG (1991) Interpreting aquatic toxicity quantitative structure—activity relationships: the significance of toxicant body residues at the pharmacologic endpoint. Sci Total Environ 109,110:515–525.PubMedCrossRefGoogle Scholar
  118. McCarty LS, Mackay D, Smith AD, Ozburn GW, Dixon DG (1992) Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: neutral narcotic organics. Environ Toxicol Chem 11:917–930.CrossRefGoogle Scholar
  119. McCarty LS, Mackay D, Smith AD, Ozburn GW, Dixon DG (1993) Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: polar narcotic organics. Ecotoxicol Environ Saf 25:253–270.PubMedCrossRefGoogle Scholar
  120. McGowan JC, Mellors A (1986) Molecular volumes and the toxicity of chemicals to fish. Bull Environ Contain Toxicol 36: 881–887.CrossRefGoogle Scholar
  121. McKim JM, Schmieder PK (1991) Bioaccumulation: does it reflect toxicity? In: Nagel R, Loskill R (eds) Bioaccumulation in Aquatic Systems: Contribution to the Assessment. Proceeding of an International Workshop, Berlin 1990. VCH Verlagsgesellsehaft, Weinheim, pp 161–188.Google Scholar
  122. McKim JM, Bradbury SP, Niemi GJ (1987a) Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ Health Perspect 71:171–186.CrossRefGoogle Scholar
  123. McKim JM, Schmieder PK, Carlson RW, Hunt EP (1987b) Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish: Part 1. Pentachlorophenol, 2,4-dinitrophenol, tricaine methanesulfonate and 1-octanol. Environ Toxicol Chem 6:295–312.Google Scholar
  124. McKim JM, Schmieder PK, Niemi GJ, Carlson RW, Henry JR (1987c) Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acutetoxicity syndromes in fish: Part 2. Malathion, carbaryl, acrolein and benzaldehyde. Environ Toxicol Chem 6:313–328.Google Scholar
  125. McLesse DW, Metcalfe CD, Zitko V (1980) Lethality of permethrin, cypermethrin and fenvalerate to salmon, lobster and shrimp. Bull Environ Contam Toxicol 25:950–955.CrossRefGoogle Scholar
  126. Meyer KH (1937) Contributions to the theory of narcosis. J Chem Soc Faraday Trans 33:1062–1068.CrossRefGoogle Scholar
  127. Miller JC, Miller KW (1975) Approaches to the mechanisms of action of general anesthetics. In: Blaschko HKF (ed) Physiological and Pharmacological Biochemistry. Biochemistry Series One, Vol. 12. MTP International Review of Science. Butterworths, London, pp 33–76.Google Scholar
  128. Miller KW (1985) The nature of the site of general anesthesia. In: Smythies JR, Bradley RJ (eds) International Review of Neurobiology, Vol. 27. Academic Press, Orlando, pp 1–61.Google Scholar
  129. Miller KW, Pang KY (1976) General anesthetics can selectively perturb lipid bilayer membrane. Nature (Lond) 263:253–255.CrossRefGoogle Scholar
  130. Miller KW, Wilson MW (1978) The pressure reversal of a variety of anesthetic agents in mice Anesthesiology 48:104–110.Google Scholar
  131. Miller KW, Paton WDM, Smith RA, Smith EB (1973) The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol 9:131–143.PubMedGoogle Scholar
  132. Miller SL (1961) A theory of gaseous anesthetics. Proc Natl Acad Sci USA 47:1515–1524.PubMedCrossRefGoogle Scholar
  133. Moriarty F (1975) Exposure and residues. In: Moriarty F (ed) Organochlorine Insecticides: Persistent Organic Pollutants. Academic Press, London, pp 29–72.Google Scholar
  134. Mortimer MR, Connell DW (1994) Critical internal and aqueous lethal concentrations of chlorobenzenes with the crab Portunus pelagicus (L). Ecotoxicol Environ Saf 28:298–312.PubMedCrossRefGoogle Scholar
  135. Moss GWJ, Franks NP, Lieb WR (1991) Modulation of the general anesthetic sensitivity of a protein: a transition between two forms of firefly luciferase. Proc Natl Acad Sci USA 88:134–138.PubMedCrossRefGoogle Scholar
  136. Mount DI, Vigor LW, Schafer ML (1966) Endrin: use of concentration in blood to diagnose acute toxicity to fish. Science 152:1388–1390.PubMedCrossRefGoogle Scholar
  137. Mullins LJ (1954) Some physical mechanisms in narcosis. Chem Rev 54:289–323.CrossRefGoogle Scholar
  138. Murphy PG, Murphy JV (1971) Correlations between respiration and direct uptake of DDT in the mosquitofish. Bull Environ Contam Toxicol 6:581–588.PubMedCrossRefGoogle Scholar
  139. Neely WB (1979) Estimating rate constants for the uptake and clearance of chemicals by fish. Environ Sci Technol 13:1506–1510.CrossRefGoogle Scholar
  140. Neely WB, Branson DR, Blau GE (1974) Partition coefficients to measure bioconcentration potential or organic chemicals in fish. Environ Sci Technol 8:1113–1115.CrossRefGoogle Scholar
  141. Nirmalakhandan NN, Speece RE (1988) Structure—activity relationships: quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ Sci Technol 22:606–615.CrossRefGoogle Scholar
  142. Ohayo-Mitoko GJA, Deneer JW (1993) Lethal body burdens of four organophosphorus pesticides in the guppy (Poecilia reticulata). Sci Total Environ (Suppl) 1993:559–565.CrossRefGoogle Scholar
  143. Oliver BG, Niimi A (1983) Bioconcentration of chlorobenzenes from water to rainbow trout: correlation with partition coefficients and environmental residues. Environ Sci Technol 17:287–291.CrossRefGoogle Scholar
  144. Opperhuizen A, Schrap SM (1988) Uptake efficiencies of two polychlorobiphenyls in fish after dietary exposure to five different concentrations. Chemosphere 17:253–262.CrossRefGoogle Scholar
  145. Pauling SL (1961) A molecular theory of general anesthesia. Science 134:15–21.PubMedCrossRefGoogle Scholar
  146. Pawlisz AN, Peters RH (1993) A test of the equipotency of internal burdens of nine narcotic chemicals using Daphnia magna. Environ Sci Technol 27:2801–2806.CrossRefGoogle Scholar
  147. Rach JJ, Gingerich WH (1986) Distribution and accumulation of rotenone in tissues of warmwater fishes. Trans Am Fish Soc 115:214–219.CrossRefGoogle Scholar
  148. Reid RC, Prausnitz JM, Sherwood TK (1987) The Properties of Liquids and Gases, 4th Ed. McGraw-Hill, New York, pp 52–68.Google Scholar
  149. Richardson GM, Qadri SU (1986) Tissue distribution of14C-labeled residues of aminocarb in brown bullhead (Ictalurus nebulosus Le Sueur) following acute exposure. Ecotoxicol Environ Saf 12:180–186.PubMedCrossRefGoogle Scholar
  150. Richter J, Landan EM, Cohen S (1977) The action of volatile anesthetics and convulsants on synaptic transmission: a unified theory. Mol Pharmacol 13:548–559.Google Scholar
  151. Roth SH (1979) Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol 19: 159–178.PubMedCrossRefGoogle Scholar
  152. Roth S, Seeman P (1972) The membrane concentrations of neutral and positive anesthetics (alcohols, chlropromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim Biophys Acta 255:207–219.PubMedCrossRefGoogle Scholar
  153. Russom CL, Anderson EB, Greenwood BE, Pilli A (1991) ASTER: an integration of the AQUIRE data base and the QSAR system for use in ecological risk assessments. Sci Total Environ 109,110:667–670.PubMedCrossRefGoogle Scholar
  154. Saarikoski J, Viluksela M (1982) Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. Ecotoxicol Environ Saf 6:501–512.PubMedCrossRefGoogle Scholar
  155. Sabljic A (1987) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ Sci Technol 21:358–366.PubMedCrossRefGoogle Scholar
  156. Sabljic A, Protíc M (1982) Molecular connectivity: a novel method for prediction of bioconcentration factor of hazardous chemicals. Chem Biol Interact 42:301–310.PubMedCrossRefGoogle Scholar
  157. Schoen PE, Priest RG, Sheridan JP, Schnur JM (1977) Pressure-induced changes in molecular conformation in lipid alkanes. Nature (Lond) 270:412–414.CrossRefGoogle Scholar
  158. Schüürmann G, Klein W (1988) Advances in bioconcentration prediction. Chemosphere 17:1551–1574.CrossRefGoogle Scholar
  159. Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–635.PubMedGoogle Scholar
  160. Seeman P (1974) The membrane expansion theory of anesthesia: direct evidence using ethanol and a high precision density meter. Experientia (Basel) 30:759–760.PubMedCrossRefGoogle Scholar
  161. Seeman P, Kwant WO, Sauks T (1969) Membrane expansion of erythrocyte ghosts by tranquilizers and anesthetics. Biochim Biophys Acta 183:499–511.PubMedCrossRefGoogle Scholar
  162. Seeman P, Roth S (1972) General anesthetics expand cell membrane at surgical concentrations. Biochim Biophys Acta 255:171–177.PubMedCrossRefGoogle Scholar
  163. Shaw GR, Connell DW (1987) Comparative kinetics for bioaccumulation of polychlorinated biphenyls by polychaete (Capitella capitata) and fish (Mugil cephalus). Ecotoxicol Environ Saf 13:84–91.PubMedCrossRefGoogle Scholar
  164. Sijm DTHM, Opperhuizen A (1996) Dioxins: an environmental risk for fish? In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental Contaminants in Wildlife: Interpretating Tissue Concentrations. SETAC Special Publication Series. CRC—Lewis, Boca Raton, pp 209–228.Google Scholar
  165. Sijm DTHM, Schipper M, Opperhuizen A (1993) Toxicokinetics of halogenated benzenes in fish: lethal body burden as a toxicological end point. Environ Toxicol Chem 12:1117–1127.CrossRefGoogle Scholar
  166. Sixt S, Altschuh J, Bruggemann R (1995) Quantitative structure toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere 30: 2397–2414.CrossRefGoogle Scholar
  167. Slater SJ, Cox KJA, Lombardi JV, Ho C, Kelly MB, Rubin E, Stubbs CD (1993) Inhibi-tion of protein kinase C by alcohols and anesthetics. Nature (Lond) 364:82–84.PubMedCrossRefGoogle Scholar
  168. Smith EB, Bower-Riley F, Daniels S, Dunbar IT, Harrison CB, Paton WDM (1984) Species variation and the mechanism of pressure anesthetic interactions. Nature (Lond) 311:56–57.PubMedCrossRefGoogle Scholar
  169. Southworth GR, Blauchamp JJ, Schmieder PK (1978) Bioaccumlation potential and acute toxicity of synthetic fuel effluents in freshwater biota: azarenes. Environ Sci Technol 12:1062–1066.CrossRefGoogle Scholar
  170. Spehar RL, Nelson HP, Swanson MJ, Renoos JW (1985) Pentachlorophenol toxicity to amphipods and fathead minnows at different test pH values. Environ Toxicol Chem 4:389–397.CrossRefGoogle Scholar
  171. Sprague JB (1969) Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Res 3:793–821CrossRefGoogle Scholar
  172. Stephan CE (1977) Methods for calculating an LC50. In: Mayer FL, Hamelink JL (eds) Aquatic Toxicology and Hazard Evaluation. ASTM STP 634. American Society for Testing and Materials, Philadelphia, pp 65–84.CrossRefGoogle Scholar
  173. Tas JW, Seinen W, Opperhuizen A (1991) Lethal body burden of triphenyltin chloride in fish: preliminary results. Comp Biochem Physiol 100C:59–60.Google Scholar
  174. Trudell JR (1977a) A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46:5–10.CrossRefGoogle Scholar
  175. Trudell JR (1977b) The membrane volume occupied by anesthetic molecules: a reinter-pretation of the erythrocyte expansion data. Biochim Biophys Acta 470:509–510.CrossRefGoogle Scholar
  176. Trudell J, Hubbell WL, Cohen EN (1973a) The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta 291:321–327.CrossRefGoogle Scholar
  177. Trudell JR, Hubbell WL, Cohen EN (1973b) Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta 291: 328–334.CrossRefGoogle Scholar
  178. van den Heuvel MR, McCarty LS, Lanno RP, Hickie BE, Dixon DG (1991) Effect of total body lipid on the toxicity and toxicokinetics of pentachlorophenol in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 20:235–252.CrossRefGoogle Scholar
  179. van der Weiden MEJ, van der Kolk J, Penninks AH, Seinen W, van der Berg M (1990) A dose/response study with 2,3,7,8-TCDD in the rainbow trout (Oncorhynchus mykiss). Chemosphere 20:1053–1058.CrossRefGoogle Scholar
  180. van Hoogen G, Opperhuizen A (1988) Toxicokinetics of chlorobenzenes in fish. Environ Toxicol Chem 11:941–951.Google Scholar
  181. van Leeuwen C, van der Zandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM (1992) Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industial pollutants. Environ Toxicol Chem 11:267–282.CrossRefGoogle Scholar
  182. van Wijk RJ, Kraaij R (1994) Use of model parameter estimations from standard fish toxicity tests to indicate toxic mechanisms. Bull Environ Contam Toxicol 53:171178.Google Scholar
  183. van Wezel AP, Punte SS, Opperhuizen A (1995) Lethal body burdens of polar narcotics: chlorophenols. Environ Toxicol Chem 14:1579–1585.CrossRefGoogle Scholar
  184. GD, Broderius SJ (1987) Structure—toxicity relationships for industrial chemicals causing type (II) narcosis syndrome. In: Kaiser KLE (ed) QSAR in Environmental Toxicology, Vol. II. D. Reidel, Dordrecht, The Netherlands, pp 385–391.CrossRefGoogle Scholar
  185. Veith GD, Broderius SJ (1990) Rules for distinguishing toxicants that cause type I and type H narcosis syndromes. Environ Health Perspect 87:207–211.PubMedCrossRefGoogle Scholar
  186. Veith GD, Call DJ, Brooke LT (1983) Structure—toxicity relationships for the fathead minnows Pimephales promelas: narcotic industrial chemicals. Can J Fish Aquat Sci 40:743–748.CrossRefGoogle Scholar
  187. Veith GD, Defoe DL, Bergstedt BV (1979) Measuring and estimating the bioconcentration factors of chemicals in fish. J Fish Res Board Can 36:1040–1048.CrossRefGoogle Scholar
  188. Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1: Structure—activity relationships for prediction of aquatic toxicity. Chemosphere 25(4):471–491.CrossRefGoogle Scholar
  189. Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABAAreceptor expressed in Xenopus oocyte requires 8 amino acids contained in the ‘12L subunit. Neuron 7:27–33.PubMedCrossRefGoogle Scholar
  190. Walker MK, Spitsbergen JM, Olson JR, Peterson RE (1991) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) toxicity during early life stage development of lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 48:875–883.CrossRefGoogle Scholar
  191. Wannemacher R, Rebstock A, Kulger E, Schrenk D, Bock KW (1992) Effects of 2,3,7,8tetrachlorodibenzo -p-dioxin on reproduction and oogenesis in zebrafish (Brachydanio rerio). Chemosphere 24:1361–1368.CrossRefGoogle Scholar
  192. Warne MSJ (1991) Mechanism and prediction of the nonspecific toxicity of individual compounds and mixtures. PhD thesis. Griffith University, Queensland, Australia.Google Scholar
  193. Wisk JD, Cooper KR (1990) The stage specific toxicity of 2,3,7,8-tetrachlorodibenzo-pdioxin in embryos of the Japanese medeka (Oryzias latipes). Environ Toxicol Chem 9:1159–1169.Google Scholar
  194. Yokim RS, Isensee AR, Jones GE (1978) Distributions and toxicity of TCDD and 2,4,5T in an aquatic model system. Chemosphere 3:215–220.CrossRefGoogle Scholar
  195. Zaroogian GE, Heltshe JF, Johnson M (1985) Estimation of bioconcentration in marine species using structure—activity models. Environ Toxicol Chem 4:3–12.CrossRefGoogle Scholar
  196. Zok S, Görge G, Kalsch W, Nagel R (1991) Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio renio). Sci Total Environ 109,110:411–421.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Yupadee Chaisuksant
    • 1
  • Qiming Yu
    • 2
  • Des W. Connell
    • 2
  1. 1.Faculty of Science and TechnologyPrince of Songkla UniversityPattaniThailand
  2. 2.Faculty of Environmental SciencesGriffith UniversityNathanAustralia

Personalised recommendations