Skip to main content

The Internal Critical Level Concept of Nonspecific Toxicity

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 162))

Abstract

Toxicity of chemicals to organisms may be classified into two basic types: specific (or reactive or chemical) and nonspecific (or nonreactive or physical) (37;137). Specific toxicity results from a specific chemical reaction mechanism such as a reaction with an enzyme or the inhibition of a metabolic pathway in an organism (13). Toxicants causing this type of toxicity include heavy metal ions, organometallic compounds, and other chemically reactive agents (37). Nonspecific toxicity, often described as narcosis, refers to any reversible decrease in the physiological functions of an organism. This mode of toxic action is directly associated with the quantity, rather than the chemical structure, of the toxicants involved (13;137). Nonspecific toxicity has been found to be the predominant mode of toxic action of industrial organic chemicals acting on aquatic organisms, especially fish. A variety of organic compounds act as nonspecific toxicants to aquatic organisms, including aliphatic and aromatic hydrocarbons, chlorinated hydrocarbons, alcohols, ethers, weak acids and bases, and some aliphatic nitrocompounds (186). These compounds have also been described as depressants because of their use as hypnotics and general anaesthetics in higher organisms and humans (4). In small doses they induce sleep and in larger doses a lack of sensation-awareness in the brain to any change in the body (4;43).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abernethy SG, Mackay D, McCarty LS (1988) Volume fraction correlation for narcosis in aquatic organisms: the key role of partitioning. Environ Toxicol Chem 7:469–481.

    Article  CAS  Google Scholar 

  • Adey G, Wardley-Smith B, White D (1976) Mechanism of inhibition of bacterial luciferase by anesthetics. Life Sci 17:1849–1854.

    Article  Google Scholar 

  • Ahlers J, Cascorbi I, Foret M, Gies A, Kohler M, Pauli W, Rosick E (1991) Interaction with functional membrane proteins—a common mechanism of toxicity for lipophilic environmental chemicals? Comp Biochem Physiol 1000:111–113.

    Google Scholar 

  • Albert A (1968) Selective Toxicity and Related Topics, 3rd ed. Methuen, London, pp 436–449.

    Google Scholar 

  • Barber MC, Suarez LA, Lassiter RR (1988) Modeling bioconcentration of nonpolar organic pollutants by fish. Environ Toxicol Chem 7:545–558.

    Article  CAS  Google Scholar 

  • Barron MG, Stehly GR, Hayton WL (1990) Pharmacokinetic modeling in aquatic animals. I. Model and concepts. Aquat Toxicol 18:61–85.

    Article  CAS  Google Scholar 

  • Bamthouse LW, Suter GW II, Bartell SM (1988) Quantifying risk of toxic chemicals to aquatic populations and ecosystems. Chemosphere 17:1487–1492.

    Article  Google Scholar 

  • Belfroid A, Seinen W, van Gestel K, Hermens J (1993a) The acute toxicity of chlorobenzenes for earthworms (Eisenia andrei) in different exposure systems. Chemosphere 26:2265–2277.

    Article  CAS  Google Scholar 

  • Belfroid A, van Wezel A, Sikkenk M, van Gestel K, Seinen W, Hermens J (1993b) The toxicokinetic behavior of chlorobenzenes in earthworms (Eisenia andrei): experiments in water. Ecotoxicol Environ Saf 25:154–165.

    Article  CAS  Google Scholar 

  • Bell RM, Burns DJ (1991) Lipid activation of protein kinase C. J Biol Chem 266:4661–4664.

    PubMed  CAS  Google Scholar 

  • Beyer WN, Heinz GH, Redmon-Norwood AW (eds) (1996) Environmental Contaminations in Wildlife: Interpreting Tissue Concentrations. SETAC Special Publication Series. Lewis, Boca Raton.

    Google Scholar 

  • Bishop WE, Maki AW (1980) A critical comparison of two bioconcentration test methods. In: Eaton JG, Parrish PR, Hendricks AC (eds) Aquatic Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia, pp 61–72.

    Chapter  Google Scholar 

  • Blum DJW, Speece RE (1990) Determining chemical toxicity to aquatic species: the use of QSARs and surrogate organisms. Environ Sci Technol 24:284–293.

    Article  CAS  Google Scholar 

  • Bobra A, Shiu WY, Mackay D (1985) Quantitative structure—activity relationships for the acute toxicity of chlorobenzenes to Daphnia magna. Environ Toxicol Chem 4: 297–305.

    CAS  Google Scholar 

  • Boggs JM, Roth SH, Yoon T, Hsia JC (1976a) Site and mechanism of anesthetic action. II. Pressure effect on the nerve conduction-blocking activity of a spin-labeled anesthetic. Mol Pharmacol 12:136–143.

    CAS  Google Scholar 

  • Boggs JM, Yoon T, Hsia JC (1976b) Site and mechanism of anesthetic action. I. Effect of anesthetics and pressure on fluidity of spin-labeled lipid vesicles. Mol Pharmacol 12:127–135.

    CAS  Google Scholar 

  • Bradbury SP, Symonik DM, Coats JR, Atchison GL (1987) Toxicity of fenvalerate and its constituent isomers to the fathead minnow Pimephales promelas and bluegill Lepomis macrochirus. Bull Environ Contam Toxicol 38:727–735.

    Article  PubMed  CAS  Google Scholar 

  • Bradbury SP, Henry TR, Niemi GJ, Carlson RW, Snarski VM (1989) Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish: Part 3. Polar narcotics. Environ Toxicol Chem 8:247–261.

    CAS  Google Scholar 

  • Bruggeman WA, Opperhuizen A, Wijbenga A, Hutzinger 0 (1984) Bioaccumulation of superhydrophilic chemicals in fish. Toxicol Environ Chem 7:173–189.

    Article  CAS  Google Scholar 

  • Bysshe SE (1990) Bioconcentration factor in aquatic organisms. In: Lyman WJ, Reehl WF, Rosenblatt DH (eds) Handbook of Chemical Property Estimation Methods: Environmental Behavior of Oganic Compounds, 3rd Ed. American Chemical Society, Washington, DC, pp 5–1–5–30.

    Google Scholar 

  • Calamari D, Vighi M (1988) Experiences on QSARs and evaluative models in ecotoxicology. Chemosphere 17:1539–1549.

    Article  Google Scholar 

  • Call D, Brooke L, Knuth M, Poirier S, Hoglund M (1985) Fish subchronic toxicity prediction model for industrial organic chemicals that produce narcosis. Environ Toxicol Chem 4:335–341.

    Article  CAS  Google Scholar 

  • Carlson AR, Kosian PA (1987) Toxicity of chlorinated benzenes to fathead minnow. Arch Environ Contam Toxicol 16:129–135.

    Article  PubMed  CAS  Google Scholar 

  • Chaisuksant Y, Yu Q, Connell DW (1997) Internal lethal concentrations of halobenzenes with fish (Gambusia affinis). Ecotoxicol Environ Saf 37:66–75.

    Article  PubMed  CAS  Google Scholar 

  • Chin JH, Trudell JR, Cohen EN (1976) The compression-ordering and solubility-disordering effects of high pressure gases on phospholipid bilayers. Life Sci 18:489–498.

    Article  PubMed  CAS  Google Scholar 

  • Chiou CT (1985) Partition coefficients of organic compounds in lipid-water systems and correlations with fish bioconcentration factors. Environ Sci Technol 19:57–62.

    Article  Google Scholar 

  • Chiou CT, Freed VH, Schmedding DW, Kohnert RL (1977) Partition coefficient and bioaccumulation of selected organic chemicals. Environ Sci Technol 11:475–478.

    Article  CAS  Google Scholar 

  • Clark AJ (1937) The action of narcotics on enzymes and cells. J Chem Soc Faraday Trans 33:1057–1061.

    Article  CAS  Google Scholar 

  • Clark KE, Gobas FAPC, Mackay D (1990) Model of organic chemical uptake and clearance by fish from food and water. Environ Sci Technol 24:1203–1213.

    Article  CAS  Google Scholar 

  • Connell DW (1988) Bioaccumulation behaviour of persistent organic chemicals with aquatic organisms. Rev Environ Contam Toxicol 101:117–154.

    Article  Google Scholar 

  • Connell DW (1990) Bioaccumulation of Xenobiotic Compounds. CRC Press, Boca Raton.

    Google Scholar 

  • Connell DW (1994) The octanol-water partition coefficient. In: Carlow P (ed) Handbook of Ecotoxicology, Vol. 2, Blackwell, Oxford, pp 311–320.

    Google Scholar 

  • Connell DW, Hawker DW (1988) Use of polynomial expressions to describe the bioconcentration of hydrophobic chemicals by fish. Ecotoxicol Environ Saf 16:242–257.

    Article  PubMed  CAS  Google Scholar 

  • Connell DW, Markwell R (1992) Mechanism and prediction of nonspecific toxicity to fish using bioconcentration characteristics. Ecotoxicol Environ Saf 24:247–265.

    Article  PubMed  CAS  Google Scholar 

  • Connell DW, Schüürmann G (1988) Evaluation of various molecular parameters as predictors of bioconcentration in fish. Ecotoxicol Environ Saf 15:324–335.

    Article  PubMed  CAS  Google Scholar 

  • Connolly JP (1985) Predicting single-species toxicity in nature water systems. Environ Toxicol Chem 4:573–782.

    Article  CAS  Google Scholar 

  • Crisp DJ, Christie AO, Ghobashy AFA (1967) Narcotic and toxic action of organic compounds on barnacle larvae. Comp Biochem Physiol 22:629–649.

    Article  CAS  Google Scholar 

  • Davies RP, Dobbs AJ (1984) The prediction of bioconcentration in fish. Water Res 18: 1253–1262.

    Article  CAS  Google Scholar 

  • de Bruijn J, Yedema E, Seinen W, Hermens JLM (1991) Lethal body burdens of four organophosphorous pesticides in the guppy (Poecilia reticulata). Aquat Toxicol 20: 111–122.

    Article  Google Scholar 

  • Deneer JW, Sinnige TL, Seinen W, Hermens JLM (1987) Quantitative structure-activity relationships for the toxicity and bioconcentration of nitrobenzene derivatives towards the guppy (Poecilia reticulata). Aquat Toxicol 10:115–129.

    Article  CAS  Google Scholar 

  • de Wolf W, Opperhuizen A, Seinen W, Hermens JLM (1991) Influence of survival time on the lethal body burden of 2,3,4,5-tetrachloroaniline in the guppy. Sci Total Environ 109,110:457–459.

    Article  PubMed  Google Scholar 

  • de Wolf W, Seinen W, Opperhuizen A, Hermens JLM (1992) Bioconcentration and lethal body burden of 2,3,4,5-tetrachloroaniline in guppy Poecilia reticulata. Chemosphere 25:853–863.

    Article  Google Scholar 

  • Dluzewski AR, Halsey MJ, Simmonds AC (1983) Membrane interactions with general and local anaesthetics: a review of molecular hypotheses of anaesthesia. Mol Aspects Med 6:459–573.

    CAS  Google Scholar 

  • Doe KG, Ernst WR, Parker WR, Julien GRJ, Hennigar PA (1988) Influence of pH on the acute lethality of fenitrothion, 2,4-D and aminocarb, and some pH-altered sublethal effects of aminocarb on rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 45:287–293.

    Article  CAS  Google Scholar 

  • Donkin P, Widdows J, Evans SV, Brinsley MD (1991) QSARs for the sublethal responses of marine mussels (Mytilus edulis). Sci Total Environ 109,110:461–471.

    Article  PubMed  Google Scholar 

  • Duffus JH (1980) Assessment of toxicity. In: Duffus JH (ed) Environmental Toxicology. Resource and Environmental Science Series. Edward Arnold, London, pp 1–12.

    Google Scholar 

  • Elliot JR, Haydon DA (1989) The actions of neutral anesthetics on ion conductances of nerve membranes. Biochim Biophys Acta 988:257–286.

    Article  Google Scholar 

  • El-Magharabi E, Eckenhoff RG, Shuman H (1992) Saturable binding of halothane to rat brain synaptosomes. Proc Nail Acad Sci USA 89:4329–4332.

    Article  Google Scholar 

  • Eyring H, Woodbury JW, D’Arrigs JS (1973) A molecular mechanism of general anesthesia. Anesthesiology 38:415–424.

    Article  PubMed  CAS  Google Scholar 

  • Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc London Ser B 127:387–404.

    Article  CAS  Google Scholar 

  • Fitzgerald DG, Warner KA, Lanno RP, Dixon DG (1996) Assessing the effects of modifying factors on pentachlorophenol toxicity to earthworms: applications of body residues. Environ Toxicol Chem 15:2299–2304.

    Article  CAS  Google Scholar 

  • Franks NP, Lieb WR (1978) Where do general anesthetics act? Nature (Lond) 274:339–341.

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1981) Is membrane expansion relevant to anesthesia? Nature (Lond) 29:248–251.

    Article  Google Scholar 

  • Franks NP, Lieb WR (1982) Molecular mechanisms of general anesthesia. Nature (Lond) 300:487–493.

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1984) Do general anesthetics act by competitive binding to specific receptors? Nature (Lond) 310:599–601.

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1985) Mapping of general anesthetics target sites provides a molecular basis for cutoff effects. Nature (Lond) 316:349–351.

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1986) Partitioning of long-chain alcohols into lipid bilayers: implications for mechanisms of general anesthesia. Proc Natl Acad Sci USA 83:5116–5120.

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Lieb WR (1994) Molecular and cellular mechanisms of general anesthesia. Nature (Lond) 367:607–614.

    Article  PubMed  CAS  Google Scholar 

  • Galassi S, Mingazzini M, Viganb L, Cesarco D, Tosato ML (1988) Approaches to modeling toxic responses of aquatic organisms to aromatic hydrocarbons. Ecotoxicol Environ Saf 16:158–169.

    Article  PubMed  CAS  Google Scholar 

  • Gavezzotti A (1983) The calculation of molecular volumes and the use of volume analysis in the investigation of structure media and of solid-state organic reactivity. J Am Chem Soc 105:5220–5225.

    Article  CAS  Google Scholar 

  • Geyer H, Sheehan P, Kotsias D, Freitag D, Korte F (1982) Prediction of ecotoxicological behaviour of chemicals: relationship between physicochemical properties and bioaccumulation of organic chemicals in the mussel Mytilus edulis. Chemosphere 11:1121–1134.

    Article  CAS  Google Scholar 

  • Geyer H, Scheunert I, Brüggemann R., Steinberg C, Korte F, Kettrup A (1991) QSAR for organic chemical bioconcentration in Daphnia algae, and mussels. Sci Total Environ 109,110:387–394.

    Article  PubMed  Google Scholar 

  • Halsey MJ, Wardley-Smith B (1975) Pressure reversal of narcosis produced by anaesthetics, narcotics and tranquilizers. Nature (Lond) 257:811–813.

    Article  PubMed  CAS  Google Scholar 

  • Hamelink JL (1977) Current bioconcentration test methods and theory. In: Mayer FL, Hamelink JL (eds) Aquatic Toxicology and Hazard Evaluation. ASTM STP 634. American Society for Testing and Materials, Philadelphia, pp 149–161.

    Chapter  Google Scholar 

  • Hamelink JL, Specie A (1977) Fish and chemical: the process of accumulation. Annu Rev Pharmacol Toxicol 17:167–177.

    Article  PubMed  CAS  Google Scholar 

  • Hamelink JL, Waybrant RC, Ball C (1971) A proposal: exchange equilibria control the degree chlorinated hydrocarbons are biologically magnified in lentic environments. Trans Am Fish Soc 100:207–214.

    Article  CAS  Google Scholar 

  • Hansch C (1969) A quantitative approach to biochemical structure—activity relationships. Acc Chem Res 2:232–240.

    Article  CAS  Google Scholar 

  • Hansch C, Dunn WJ III (1972) Linear relationships between lipophilic character and biological activity of drugs. J Pharm Sci 61:1–19.

    Article  PubMed  CAS  Google Scholar 

  • Hansch C, Fujita T (1964) A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626.

    Article  CAS  Google Scholar 

  • Hansch C, Kim D, Leo AJ, Novellino E, Silipo C, Vittoria A (1989) Toward a quantitative comparative toxicology of organic compounds. CRC Crit Rev Toxicol 19:185–226.

    Article  CAS  Google Scholar 

  • Hansen DJ Goodman LR, Cripe GM, MaCanly SF (1986) Early life-stage toxicity test methods for gulf toadfish (Opsanus beta) and results using chlorpyrifos. Ecotoxicol Environ Saf 11:15–22.

    Article  PubMed  CAS  Google Scholar 

  • Hawker DW, Connell DW (1986) Bioconcentration of lipophilic compounds by some aquatic organisms. Ecotoxicol Environ Saf 11:184–197.

    Article  PubMed  CAS  Google Scholar 

  • Haya K (1989) Toxicity of pyrethroid insecticides to fish. Environ Toxicol Chem 8: 381–391.

    Article  CAS  Google Scholar 

  • Haydon DA, Hendry BM, Levinson SR (1977) The molecular mechanisms of anesthesia. Nature (Lond) 268:356–358.

    Article  CAS  Google Scholar 

  • Hektoen H, Ingebrigtsen K, Brevik EM, Oehme M (1992) Interspecies differences in tissue distribution of 2,3,7,8-tetrachlorodibenzo-p-dioxin between cod (Gadus mor-hua) and rainbow trout (Oncorhynchus mykiss). Chemosphere 24:581–587.

    Article  CAS  Google Scholar 

  • Hendriks Ai (1995) Modeling response of species to microcontaminants: comparative ecotoxicology by (sub)lethal body burdens as a function of species size and partition ratio of chemicals. Ecotoxicol Environ Saf 32:103–130.

    Article  Google Scholar 

  • Hermens J, Canton H, Janssen P, Jong RD (1984a) Quantitative structure—activity relationships and toxicity studies of mixtures of chemicals with anesthetic potency: acute lethal and sublethal toxicity to Daphnia magna. Aquat Toxicol 5:143–154.

    Article  CAS  Google Scholar 

  • Hermens J, Leeuwangh P, Musch A (1984b) Quantitative structure—activity relationships and mixture toxicity studies of chloro-and alkylanilines at an acute lethal toxicity level to the guppy (Poecilia reticulata). Ecotoxicol Environ Saf 8:388–394.

    Article  CAS  Google Scholar 

  • Hermens J Könemann H, Leeuwangh P, Musch A (1985) Quantitative structure—activity relationships in aquatic toxicity studies of chemicals and complex mixtures of chemicals. Environ Toxicol Chem 4:273–279.

    Article  CAS  Google Scholar 

  • Hubbell WL, McConnell HM (1968) Spin-labelled erythrocyte membranes. Biochim Biophys Acta 219:415–427.

    Google Scholar 

  • Ikemoto Y, Motoba K, Suzuki T, Uchida M (1992) Quantitative structure—activity relationships of nonspecific and specific toxicants in several organism species. Environ Toxicol Chem 11:931–939.

    Article  CAS  Google Scholar 

  • Isnard P, Lambert S (1988) Estimating bioconcentration factors from octanol-water partition coefficient and aqueous solubility. Chemosphere 17:21–34.

    Article  CAS  Google Scholar 

  • Jain MK, Wu NY-M, Wray LV (1975) Drug-induced phase change in lipid bilayer as possible mode of action of membrane expanding drugs. Nature (Lond) 255:494–495.

    Article  PubMed  CAS  Google Scholar 

  • Johnson FH, Brown D, Marsland D (1942) A basic mechanism in the biological effects of temperature, pressure and narcotics. Science 95:200–203.

    Article  PubMed  CAS  Google Scholar 

  • Johnson FH, Flagler EA (1950) Hydrostatic pressure reversal of narcosis in tadpoles. Science 112:91–92.

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Bangham AD (1969) The action of anesthetics on phospholipid membrane. Biochim Biophys Acta 193:92–104.

    Article  PubMed  CAS  Google Scholar 

  • Johnson SM, Miller KM (1970) Antagonism of pressure and anesthesia. Nature (Lond) 228:75–76.

    Article  CAS  Google Scholar 

  • Jorgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann MJ (1991a) A general model for the interaction of foreign molecules with lipid membranes: drugs and anesthetics. Biochim Biophys Acta 1062:227–238.

    Article  CAS  Google Scholar 

  • Jorgensen K, Ipsen JH, Mouritsen OG, Bennett D, Zuckermann MJ (1991b) The effects of density fluctuations on the partitioning of foreign molecules into lipid bilayers: application to anesthetics and insecticides. Biochim Biophys Acta 1067:241–253.

    Article  CAS  Google Scholar 

  • Kenega EE, Goring CA (1980) Relationship between water solubility, soil sorption, octanol-water partitioning and bioconcentration of chemicals in biota. In: Eaton JG, Parrish PR, Hendrick AC (eds) Aquatic Toxicology. ASTM STP 707. American Society for Testing and Materials, Philadelphia, pp 78–115.

    Chapter  Google Scholar 

  • Kier LB, Hall LH (1986) Molecular Connectivity in Structure—Activity Analysis. Wiley, New York, pp 1–23.

    Google Scholar 

  • Kita Y, Bennett LJ, Miller KW (1981) The partial molar volumes of anesthetics in lipid bilayers. Biochim Biophys Acta 647:130–139.

    Article  PubMed  CAS  Google Scholar 

  • Kleeman JM, Olson JR, Peterson RE (1988) Species differences in 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity and biotransformation in fish. Fundam Appl Toxicol 10:206–213.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi K, Akitake H, Manabe K (1979) Relation between toxicity and accumulation of various chlorophenols in goldfish. Bull Jpn Soc Sci Fish 45:173–175.

    Article  CAS  Google Scholar 

  • Könemann H (1981) Quantitative structure—activity relationships in fish toxicity studies. Part 1: Relationship for 50 industrial pollutants. Toxicology 19:209–221.

    Article  PubMed  Google Scholar 

  • Könemann H, Musch A (1981) Quantitative structure—activity relationships in fish toxicity studies Part 2: The influence of pH on the QSAR of chlorophenols. Toxicology 19:223–228.

    Article  PubMed  Google Scholar 

  • Könemann H, van Leeuwen K (1980) Toxicokinetic in fish: accumulation and elimination of six chlorobenzenes by guppies. Chemosphere 9:3–19.

    Article  Google Scholar 

  • Landrum PF (1988) Toxicokinetics of organic xenobiotics in the amphipod Pontoporeia hoyi: role of physiological and environmental variables. Aquat Toxicol 12:245–271.

    Article  CAS  Google Scholar 

  • Leahy DE (1986) Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationships: octanol-water partition coefficients and aqueous solubilities. J Pharm Sci 75:629–636.

    Article  PubMed  CAS  Google Scholar 

  • Leegwater DC (1989) QSAR-analysis of acute toxicity of industrial pollutants to the guppy using molecular connectivity indices. Aquat Toxicol 15:157–168.

    Article  CAS  Google Scholar 

  • Lever MJ, Miller KW, Paton WDM, Smith EB (1971) Pressure reversal of anesthesia. Nature (Lond) 231:368–371.

    Article  PubMed  CAS  Google Scholar 

  • Lieb WR, Kovalycsik M, Mendelsohn R (1982) Do clinical levels of general anesthetics affect lipid bilayers? Evidence from Raman scattering. Biochim Biophys Acta 688: 388–398.

    Article  PubMed  CAS  Google Scholar 

  • Lipnick RL (1989a) Hans Horst Meyer and the lipoid theory of narcosis. Trends Phannacol Sci 10:265–269.

    Article  CAS  Google Scholar 

  • Lipnick RL (1989b) Narcosis, electrophile and proelectrophile toxicity mechanisms: application of SAR and QSAR. Environ Toxicol Chem 8:1–12.

    CAS  Google Scholar 

  • Lipnick RL (1995) Structure—activity relationships. In: Rand GM (ed) Fundamentals of Aquatic Toxicology: Effects, Environmental Fate, and Risk Assessment. 2nd Ed. Taylor & Francis, Washington, DC, pp 609–655.

    Google Scholar 

  • MacDonald AG (1978) A dilatometric investigation of the effects of general anesthetics, alcohols and hydrostatic pressure on the phase transition in smectic mesophases of dipalmitoyl phosphatidylcholine. Biochim Biophys Acta 507:26–37.

    Article  PubMed  CAS  Google Scholar 

  • Mackay D (1982) Correlation of bioconcentration factors. Environ Sci Technol 16:274–278.

    Article  PubMed  CAS  Google Scholar 

  • Mackay D, Hughes AI (1984) Three-parameter equation describing the uptake of organic compounds by fish. Environ Sci Technol 18:439–444.

    Article  PubMed  CAS  Google Scholar 

  • Mackay D, Hughes AI, Paterson S (1985) A model for p-aminobenzoic acid ester narcosis in goldfish. J Pharm Sci 74:1236–1238.

    Article  PubMed  CAS  Google Scholar 

  • Mackay D, Puig H, McCarty LS (1992) An equation describing the time course and variability in uptake and toxicity of narcotic chemicals to fish. Environ Toxicol Chem 11:941–951.

    Article  CAS  Google Scholar 

  • Mancini JL (1983) A method for calculating effects, on aquatic organisms, of time varying concentrations. Water Res 17:1355–1362.

    Article  CAS  Google Scholar 

  • McCarty LS (1986) The relationship between aquatic toxicity QSARs and bioconcentration for some organic chemicals. Environ Toxicol Chem 5:1071–1080.

    Article  CAS  Google Scholar 

  • McCarty LC (1987) Relationship between toxicity and bioconcentration for some organic chemicals. I. Examination of the relationship. In: Kaiser KLE (ed) QSAR in Environmental Toxicology, Vol. II, D. Reidel, Dordrecht, The Netherlands, pp 207–220.

    Chapter  Google Scholar 

  • McCarty LS (1991) Toxicant body residues: implications for aquatic bioassays with some organic chemicals. In: Mayer MA, Barron MG (eds) Aquatic Toxicology and Risk Assessment, Vol. 14. ASTM STP 1124. American Society for Testing and Materials, Philadelphia, pp 183–192.

    Chapter  Google Scholar 

  • McCarty LS, Hodson PV, Graig GR, Kaiser SLE (1985) The use of quantitative structure—activity relationships to predict the acute and chronic toxicities of organic chemicals to fish. Environ Toxicol Chem 4:595–606.

    Article  CAS  Google Scholar 

  • McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27:1719–1727.

    Article  Google Scholar 

  • McCarty LS, Mackay D, Smith AD, Ozburn GW, Dixon DG (1991) Interpreting aquatic toxicity quantitative structure—activity relationships: the significance of toxicant body residues at the pharmacologic endpoint. Sci Total Environ 109,110:515–525.

    Article  PubMed  Google Scholar 

  • McCarty LS, Mackay D, Smith AD, Ozburn GW, Dixon DG (1992) Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: neutral narcotic organics. Environ Toxicol Chem 11:917–930.

    Article  CAS  Google Scholar 

  • McCarty LS, Mackay D, Smith AD, Ozburn GW, Dixon DG (1993) Residue-based interpretation of toxicity and bioconcentration QSARs from aquatic bioassays: polar narcotic organics. Ecotoxicol Environ Saf 25:253–270.

    Article  PubMed  CAS  Google Scholar 

  • McGowan JC, Mellors A (1986) Molecular volumes and the toxicity of chemicals to fish. Bull Environ Contain Toxicol 36: 881–887.

    Article  CAS  Google Scholar 

  • McKim JM, Schmieder PK (1991) Bioaccumulation: does it reflect toxicity? In: Nagel R, Loskill R (eds) Bioaccumulation in Aquatic Systems: Contribution to the Assessment. Proceeding of an International Workshop, Berlin 1990. VCH Verlagsgesellsehaft, Weinheim, pp 161–188.

    Google Scholar 

  • McKim JM, Bradbury SP, Niemi GJ (1987a) Fish acute toxicity syndromes and their use in the QSAR approach to hazard assessment. Environ Health Perspect 71:171–186.

    Article  CAS  Google Scholar 

  • McKim JM, Schmieder PK, Carlson RW, Hunt EP (1987b) Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acute toxicity syndromes in fish: Part 1. Pentachlorophenol, 2,4-dinitrophenol, tricaine methanesulfonate and 1-octanol. Environ Toxicol Chem 6:295–312.

    CAS  Google Scholar 

  • McKim JM, Schmieder PK, Niemi GJ, Carlson RW, Henry JR (1987c) Use of respiratory-cardiovascular responses of rainbow trout (Salmo gairdneri) in identifying acutetoxicity syndromes in fish: Part 2. Malathion, carbaryl, acrolein and benzaldehyde. Environ Toxicol Chem 6:313–328.

    CAS  Google Scholar 

  • McLesse DW, Metcalfe CD, Zitko V (1980) Lethality of permethrin, cypermethrin and fenvalerate to salmon, lobster and shrimp. Bull Environ Contam Toxicol 25:950–955.

    Article  Google Scholar 

  • Meyer KH (1937) Contributions to the theory of narcosis. J Chem Soc Faraday Trans 33:1062–1068.

    Article  CAS  Google Scholar 

  • Miller JC, Miller KW (1975) Approaches to the mechanisms of action of general anesthetics. In: Blaschko HKF (ed) Physiological and Pharmacological Biochemistry. Biochemistry Series One, Vol. 12. MTP International Review of Science. Butterworths, London, pp 33–76.

    Google Scholar 

  • Miller KW (1985) The nature of the site of general anesthesia. In: Smythies JR, Bradley RJ (eds) International Review of Neurobiology, Vol. 27. Academic Press, Orlando, pp 1–61.

    Google Scholar 

  • Miller KW, Pang KY (1976) General anesthetics can selectively perturb lipid bilayer membrane. Nature (Lond) 263:253–255.

    Article  CAS  Google Scholar 

  • Miller KW, Wilson MW (1978) The pressure reversal of a variety of anesthetic agents in mice Anesthesiology 48:104–110.

    CAS  Google Scholar 

  • Miller KW, Paton WDM, Smith RA, Smith EB (1973) The pressure reversal of general anesthesia and the critical volume hypothesis. Mol Pharmacol 9:131–143.

    PubMed  CAS  Google Scholar 

  • Miller SL (1961) A theory of gaseous anesthetics. Proc Natl Acad Sci USA 47:1515–1524.

    Article  PubMed  CAS  Google Scholar 

  • Moriarty F (1975) Exposure and residues. In: Moriarty F (ed) Organochlorine Insecticides: Persistent Organic Pollutants. Academic Press, London, pp 29–72.

    Google Scholar 

  • Mortimer MR, Connell DW (1994) Critical internal and aqueous lethal concentrations of chlorobenzenes with the crab Portunus pelagicus (L). Ecotoxicol Environ Saf 28:298–312.

    Article  PubMed  CAS  Google Scholar 

  • Moss GWJ, Franks NP, Lieb WR (1991) Modulation of the general anesthetic sensitivity of a protein: a transition between two forms of firefly luciferase. Proc Natl Acad Sci USA 88:134–138.

    Article  PubMed  CAS  Google Scholar 

  • Mount DI, Vigor LW, Schafer ML (1966) Endrin: use of concentration in blood to diagnose acute toxicity to fish. Science 152:1388–1390.

    Article  PubMed  CAS  Google Scholar 

  • Mullins LJ (1954) Some physical mechanisms in narcosis. Chem Rev 54:289–323.

    Article  CAS  Google Scholar 

  • Murphy PG, Murphy JV (1971) Correlations between respiration and direct uptake of DDT in the mosquitofish. Bull Environ Contam Toxicol 6:581–588.

    Article  PubMed  CAS  Google Scholar 

  • Neely WB (1979) Estimating rate constants for the uptake and clearance of chemicals by fish. Environ Sci Technol 13:1506–1510.

    Article  CAS  Google Scholar 

  • Neely WB, Branson DR, Blau GE (1974) Partition coefficients to measure bioconcentration potential or organic chemicals in fish. Environ Sci Technol 8:1113–1115.

    Article  CAS  Google Scholar 

  • Nirmalakhandan NN, Speece RE (1988) Structure—activity relationships: quantitative techniques for predicting the behavior of chemicals in the ecosystem. Environ Sci Technol 22:606–615.

    Article  CAS  Google Scholar 

  • Ohayo-Mitoko GJA, Deneer JW (1993) Lethal body burdens of four organophosphorus pesticides in the guppy (Poecilia reticulata). Sci Total Environ (Suppl) 1993:559–565.

    Article  Google Scholar 

  • Oliver BG, Niimi A (1983) Bioconcentration of chlorobenzenes from water to rainbow trout: correlation with partition coefficients and environmental residues. Environ Sci Technol 17:287–291.

    Article  CAS  Google Scholar 

  • Opperhuizen A, Schrap SM (1988) Uptake efficiencies of two polychlorobiphenyls in fish after dietary exposure to five different concentrations. Chemosphere 17:253–262.

    Article  CAS  Google Scholar 

  • Pauling SL (1961) A molecular theory of general anesthesia. Science 134:15–21.

    Article  PubMed  CAS  Google Scholar 

  • Pawlisz AN, Peters RH (1993) A test of the equipotency of internal burdens of nine narcotic chemicals using Daphnia magna. Environ Sci Technol 27:2801–2806.

    Article  CAS  Google Scholar 

  • Rach JJ, Gingerich WH (1986) Distribution and accumulation of rotenone in tissues of warmwater fishes. Trans Am Fish Soc 115:214–219.

    Article  CAS  Google Scholar 

  • Reid RC, Prausnitz JM, Sherwood TK (1987) The Properties of Liquids and Gases, 4th Ed. McGraw-Hill, New York, pp 52–68.

    Google Scholar 

  • Richardson GM, Qadri SU (1986) Tissue distribution of14C-labeled residues of aminocarb in brown bullhead (Ictalurus nebulosus Le Sueur) following acute exposure. Ecotoxicol Environ Saf 12:180–186.

    Article  PubMed  CAS  Google Scholar 

  • Richter J, Landan EM, Cohen S (1977) The action of volatile anesthetics and convulsants on synaptic transmission: a unified theory. Mol Pharmacol 13:548–559.

    CAS  Google Scholar 

  • Roth SH (1979) Physical mechanisms of anesthesia. Annu Rev Pharmacol Toxicol 19: 159–178.

    Article  PubMed  CAS  Google Scholar 

  • Roth S, Seeman P (1972) The membrane concentrations of neutral and positive anesthetics (alcohols, chlropromazine, morphine) fit the Meyer-Overton rule of anesthesia; negative narcotics do not. Biochim Biophys Acta 255:207–219.

    Article  PubMed  CAS  Google Scholar 

  • Russom CL, Anderson EB, Greenwood BE, Pilli A (1991) ASTER: an integration of the AQUIRE data base and the QSAR system for use in ecological risk assessments. Sci Total Environ 109,110:667–670.

    Article  PubMed  Google Scholar 

  • Saarikoski J, Viluksela M (1982) Relation between physicochemical properties of phenols and their toxicity and accumulation in fish. Ecotoxicol Environ Saf 6:501–512.

    Article  PubMed  CAS  Google Scholar 

  • Sabljic A (1987) On the prediction of soil sorption coefficients of organic pollutants from molecular structure: application of molecular topology model. Environ Sci Technol 21:358–366.

    Article  PubMed  CAS  Google Scholar 

  • Sabljic A, Protíc M (1982) Molecular connectivity: a novel method for prediction of bioconcentration factor of hazardous chemicals. Chem Biol Interact 42:301–310.

    Article  PubMed  CAS  Google Scholar 

  • Schoen PE, Priest RG, Sheridan JP, Schnur JM (1977) Pressure-induced changes in molecular conformation in lipid alkanes. Nature (Lond) 270:412–414.

    Article  CAS  Google Scholar 

  • Schüürmann G, Klein W (1988) Advances in bioconcentration prediction. Chemosphere 17:1551–1574.

    Article  Google Scholar 

  • Seeman P (1972) The membrane actions of anesthetics and tranquilizers. Pharmacol Rev 24:583–635.

    PubMed  CAS  Google Scholar 

  • Seeman P (1974) The membrane expansion theory of anesthesia: direct evidence using ethanol and a high precision density meter. Experientia (Basel) 30:759–760.

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Kwant WO, Sauks T (1969) Membrane expansion of erythrocyte ghosts by tranquilizers and anesthetics. Biochim Biophys Acta 183:499–511.

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Roth S (1972) General anesthetics expand cell membrane at surgical concentrations. Biochim Biophys Acta 255:171–177.

    Article  PubMed  CAS  Google Scholar 

  • Shaw GR, Connell DW (1987) Comparative kinetics for bioaccumulation of polychlorinated biphenyls by polychaete (Capitella capitata) and fish (Mugil cephalus). Ecotoxicol Environ Saf 13:84–91.

    Article  PubMed  CAS  Google Scholar 

  • Sijm DTHM, Opperhuizen A (1996) Dioxins: an environmental risk for fish? In: Beyer WN, Heinz GH, Redmon-Norwood AW (eds) Environmental Contaminants in Wildlife: Interpretating Tissue Concentrations. SETAC Special Publication Series. CRC—Lewis, Boca Raton, pp 209–228.

    Google Scholar 

  • Sijm DTHM, Schipper M, Opperhuizen A (1993) Toxicokinetics of halogenated benzenes in fish: lethal body burden as a toxicological end point. Environ Toxicol Chem 12:1117–1127.

    Article  CAS  Google Scholar 

  • Sixt S, Altschuh J, Bruggemann R (1995) Quantitative structure toxicity relationships for 80 chlorinated compounds using quantum chemical descriptors. Chemosphere 30: 2397–2414.

    Article  Google Scholar 

  • Slater SJ, Cox KJA, Lombardi JV, Ho C, Kelly MB, Rubin E, Stubbs CD (1993) Inhibi-tion of protein kinase C by alcohols and anesthetics. Nature (Lond) 364:82–84.

    Article  PubMed  CAS  Google Scholar 

  • Smith EB, Bower-Riley F, Daniels S, Dunbar IT, Harrison CB, Paton WDM (1984) Species variation and the mechanism of pressure anesthetic interactions. Nature (Lond) 311:56–57.

    Article  PubMed  CAS  Google Scholar 

  • Southworth GR, Blauchamp JJ, Schmieder PK (1978) Bioaccumlation potential and acute toxicity of synthetic fuel effluents in freshwater biota: azarenes. Environ Sci Technol 12:1062–1066.

    Article  CAS  Google Scholar 

  • Spehar RL, Nelson HP, Swanson MJ, Renoos JW (1985) Pentachlorophenol toxicity to amphipods and fathead minnows at different test pH values. Environ Toxicol Chem 4:389–397.

    Article  CAS  Google Scholar 

  • Sprague JB (1969) Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Res 3:793–821

    Article  CAS  Google Scholar 

  • Stephan CE (1977) Methods for calculating an LC50. In: Mayer FL, Hamelink JL (eds) Aquatic Toxicology and Hazard Evaluation. ASTM STP 634. American Society for Testing and Materials, Philadelphia, pp 65–84.

    Chapter  Google Scholar 

  • Tas JW, Seinen W, Opperhuizen A (1991) Lethal body burden of triphenyltin chloride in fish: preliminary results. Comp Biochem Physiol 100C:59–60.

    CAS  Google Scholar 

  • Trudell JR (1977a) A unitary theory of anesthesia based on lateral phase separations in nerve membranes. Anesthesiology 46:5–10.

    Article  CAS  Google Scholar 

  • Trudell JR (1977b) The membrane volume occupied by anesthetic molecules: a reinter-pretation of the erythrocyte expansion data. Biochim Biophys Acta 470:509–510.

    Article  CAS  Google Scholar 

  • Trudell J, Hubbell WL, Cohen EN (1973a) The effect of two inhalation anesthetics on the order of spin-labeled phospholipid vesicles. Biochim Biophys Acta 291:321–327.

    Article  CAS  Google Scholar 

  • Trudell JR, Hubbell WL, Cohen EN (1973b) Pressure reversal of inhalation anesthetic-induced disorder in spin-labeled phospholipid vesicles. Biochim Biophys Acta 291: 328–334.

    Article  CAS  Google Scholar 

  • van den Heuvel MR, McCarty LS, Lanno RP, Hickie BE, Dixon DG (1991) Effect of total body lipid on the toxicity and toxicokinetics of pentachlorophenol in rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 20:235–252.

    Article  Google Scholar 

  • van der Weiden MEJ, van der Kolk J, Penninks AH, Seinen W, van der Berg M (1990) A dose/response study with 2,3,7,8-TCDD in the rainbow trout (Oncorhynchus mykiss). Chemosphere 20:1053–1058.

    Article  Google Scholar 

  • van Hoogen G, Opperhuizen A (1988) Toxicokinetics of chlorobenzenes in fish. Environ Toxicol Chem 11:941–951.

    Google Scholar 

  • van Leeuwen C, van der Zandt PTJ, Aldenberg T, Verhaar HJM, Hermens JLM (1992) Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industial pollutants. Environ Toxicol Chem 11:267–282.

    Article  Google Scholar 

  • van Wijk RJ, Kraaij R (1994) Use of model parameter estimations from standard fish toxicity tests to indicate toxic mechanisms. Bull Environ Contam Toxicol 53:171178.

    Google Scholar 

  • van Wezel AP, Punte SS, Opperhuizen A (1995) Lethal body burdens of polar narcotics: chlorophenols. Environ Toxicol Chem 14:1579–1585.

    Article  Google Scholar 

  • GD, Broderius SJ (1987) Structure—toxicity relationships for industrial chemicals causing type (II) narcosis syndrome. In: Kaiser KLE (ed) QSAR in Environmental Toxicology, Vol. II. D. Reidel, Dordrecht, The Netherlands, pp 385–391.

    Chapter  Google Scholar 

  • Veith GD, Broderius SJ (1990) Rules for distinguishing toxicants that cause type I and type H narcosis syndromes. Environ Health Perspect 87:207–211.

    Article  PubMed  CAS  Google Scholar 

  • Veith GD, Call DJ, Brooke LT (1983) Structure—toxicity relationships for the fathead minnows Pimephales promelas: narcotic industrial chemicals. Can J Fish Aquat Sci 40:743–748.

    Article  CAS  Google Scholar 

  • Veith GD, Defoe DL, Bergstedt BV (1979) Measuring and estimating the bioconcentration factors of chemicals in fish. J Fish Res Board Can 36:1040–1048.

    Article  CAS  Google Scholar 

  • Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1: Structure—activity relationships for prediction of aquatic toxicity. Chemosphere 25(4):471–491.

    Article  CAS  Google Scholar 

  • Wafford KA, Burnett DM, Leidenheimer NJ, Burt DR, Wang JB, Kofuji P, Dunwiddie TV, Harris RA, Sikela JM (1991) Ethanol sensitivity of the GABAAreceptor expressed in Xenopus oocyte requires 8 amino acids contained in the ‘12L subunit. Neuron 7:27–33.

    Article  PubMed  CAS  Google Scholar 

  • Walker MK, Spitsbergen JM, Olson JR, Peterson RE (1991) 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) toxicity during early life stage development of lake trout (Salvelinus namaycush). Can J Fish Aquat Sci 48:875–883.

    Article  CAS  Google Scholar 

  • Wannemacher R, Rebstock A, Kulger E, Schrenk D, Bock KW (1992) Effects of 2,3,7,8tetrachlorodibenzo -p-dioxin on reproduction and oogenesis in zebrafish (Brachydanio rerio). Chemosphere 24:1361–1368.

    Article  CAS  Google Scholar 

  • Warne MSJ (1991) Mechanism and prediction of the nonspecific toxicity of individual compounds and mixtures. PhD thesis. Griffith University, Queensland, Australia.

    Google Scholar 

  • Wisk JD, Cooper KR (1990) The stage specific toxicity of 2,3,7,8-tetrachlorodibenzo-pdioxin in embryos of the Japanese medeka (Oryzias latipes). Environ Toxicol Chem 9:1159–1169.

    CAS  Google Scholar 

  • Yokim RS, Isensee AR, Jones GE (1978) Distributions and toxicity of TCDD and 2,4,5T in an aquatic model system. Chemosphere 3:215–220.

    Article  Google Scholar 

  • Zaroogian GE, Heltshe JF, Johnson M (1985) Estimation of bioconcentration in marine species using structure—activity models. Environ Toxicol Chem 4:3–12.

    Article  CAS  Google Scholar 

  • Zok S, Görge G, Kalsch W, Nagel R (1991) Bioconcentration, metabolism and toxicity of substituted anilines in the zebrafish (Brachydanio renio). Sci Total Environ 109,110:411–421.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George W. Ware

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaisuksant, Y., Yu, Q., Connell, D.W. (1999). The Internal Critical Level Concept of Nonspecific Toxicity. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 162. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1528-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1528-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7180-2

  • Online ISBN: 978-1-4612-1528-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics