Skip to main content

Part of the book series: Universitext ((UTX))

  • 1752 Accesses

Abstract

In this chapter, we consider a system of differential equations

$$x\frac{{d\vec{y}}}{{dx}} = \vec{f}\left( {x,\vec{y}} \right)$$
((E))

assuming that the entries of the \({{\mathbb{C}}^{n}}\)-valued function \(\vec{f}\) are convergent power series in complex variables \(\left( {x,\vec{y}} \right) \in {{\mathbb{C}}^{{n + 1}}}\) with coefficients in ℂ, where x is a complex independent variable and \(\vec{y} \in {{\mathbb{C}}^{n}}\) is an unknown quantity. The main tool is calculation with power series in x. In §I-4, using successive approximations, we constructed power series solutions. However, generally speaking, in order to construct a power series solution \(\vec{y}\left( x \right) = \sum\limits_{{m = 1}}^{\infty } {{{x}^{m}}{{{\vec{a}}}_{m}}}\) this expression is inserted into the given differential equation to find relationships among the coefficients \({{\vec{a}}_{m}}\), and the coefficients \({{\vec{a}}_{m}}\) are calculated by using these relationships. In this stage of the calculation, we do not pay any attention to the convergence of the series. This process leads us to the concept of formal power series solutions (cf. §V-1). Having found a formal power series solution, we estimate \(|{{\vec{a}}_{m}}|\) to test its convergence. As the function \({{x}^{{ - 1}}}\vec{f}\left( {x,\vec{y}} \right)\) is not analytic at x = 0, Theorem I-4-1 does not apply to system (E). Furthermore, the existence of formal power series solutions of (E) is not always guaranteed. Nevertheless, it is known that if a formal power series solution of (E) exists, then the series is always convergent. This basic result is explained in §V-2 (cf. [CL, Theorem 3.1, pp. 117-119] and [Wasl, Theorem 5.3, pp. 22-25] for the case of linear differential equations]). In §V-3, we define the S-N decomposition for a lower block-triangular matrix of infinite order. Using such a matrix, we can represent a linear differential operator

$$ \mathcal{L}\left[ {\vec y} \right]{\text{ = }}x\frac{{d\vec y}}{{dx}}{\text{ + }}\Omega {\text{(}}x{\text{)}} \vec y, $$
(LDO)

Where \(\Omega \left( x \right)\) is an n x n matrix whose entries are formal power series in x with coefficients in ℂn. In this way, we derive the S-N decomposition of L in §V-4 and a normal form of L in §V-5 (cf. [HKS]). The S-N decomposition of L was originally defined in [GérL]. In §V-6, we calculate the normal form of a given operator L by using a method due to M. Hukuhara (cf. [Si17, §3.9, pp. 85-89]). We explain the classification of singularities of homogeneous linear differential equations in §V-7. Some basic results concerning linear differential equations given in this chapter are also found in [CL, Chapter 4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hsieh, PF., Sibuya, Y. (1999). Singularities of the First Kind. In: Basic Theory of Ordinary Differential Equations. Universitext. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1506-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1506-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7171-0

  • Online ISBN: 978-1-4612-1506-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics