Skip to main content

Modeling Customer Survey Data

  • Conference paper

Part of the book series: Lecture Notes in Statistics ((LNS,volume 140))

Abstract

In customer value analysis (CVA), a company conducts sample surveys of its customers and of its competitors’ customers to determine the relative performance of the company on many attributes ranging from product quality and technology to pricing and sales support. The data discussed in this paper are from a quarterly survey run at Lucent Technologies.

We have built a Bayesian model for the data that is partly hierarchical and has a time series component. By “model” we mean the full specification of information that allows the computation of posterior distributions of the data — sharp specifications such as independent errors with normal distributions and diffuse specifications such as probability distributions on parameters arising from sharp specifications. The model includes the following: (1) survey respondent effects are modeled by random location and scale effects, a t-distribution for the location and a Weibull distribution for the scale; (2) company effects for each attribute through time are modeled by integrated sum-difference processes; (3) error effects are modeled by a normal distribution whose variance depends on the attribute; in the model, the errors are multiplied by the respondent scale effects.

The model is the first full description of CVA data; it provides both a characterization of the performance of the specific companies in the survey as well as a mechanism for studying some of the basic notions of CVA theory.

Building the model and using it to form conclusions about CVA, stimulated work on statistical theory, models, and methods: (1) a Bayesian theory of data exploration that provides an overall guide for methods used to explore data for the purpose of making decisions about model specifications; (2) an approach to modeling random location and scale effects in the presence of explanatory variables; (3) a reformula-tion of integrated moving-average processes into integrated sum-difference models, which enhances interpretation, model building, and computation of posterior distri-butions; (4) post-posterior modeling to combine certain specific exogenous information — information from sources outside of the data — with the information in a posterior distribution that does not incorporate the exogenous information; (5) trellis display, a framework for the display of multivariable data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albert, J. H. and Chib, S. (1993). Bayesian Analysis of Binary and Polychotomous Response Data, Journal of the American Statistical Association, 88, 669–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Anscombe, F. J. and Tukey, J. W. (1961). The examination and analysis of residuals, Technometrics 5, 141–160

    Article  MathSciNet  Google Scholar 

  • Becker, R. A. and Cleveland, W. S. (1996). Trellis Graphics User’s Manual, Math-Soft, Seattle. Internet: b&w or color postscript (224 pages) available from site http://www.cm.bell-labs.com/stat/project/trellis

    Google Scholar 

  • Becker, R. A., Cleveland, W. S., and Shyu, M. J. (1996). The Design and Control of Trellis Display, Journal of Computational and Statistical Graphics 5, 123–155. Internet: b&w or color postscript (36 pages) available from site http://www.cm.bell-labs.com/stat/project/trellis

    Google Scholar 

  • Box, G. E. P. and Hunter, W. G. (1965). The Experimental Study of Physical Mechanisms, Technometrics 7, 23–42.

    Article  Google Scholar 

  • Box, G. E. P. and Jenkins, G. M. (1970). Time Series Analysis Forecasting and Control, 2nd ed., Holden-Day, Oakland, CA.

    MATH  Google Scholar 

  • Box, G. E. P. (1980). Sampling and Bayes’ Inference in Scientific Modelling and Robustness, Journal of the Royal Statistical Society A 143, 383–430.

    Article  MathSciNet  MATH  Google Scholar 

  • Bradlow, E. T. and Zaslaysky (1997). A Hierarchical Latent Variable Model for Ordinal Data from a Customer Satisfaction Survey with “No Answer” Responses. Technical Report, Department of Marketing, Wharton School, University of Pennsylvania.

    Google Scholar 

  • Cleveland, W. S. (1993). Visualizing Data, Hobart Press, books@hobart.com.

    Google Scholar 

  • Cleveland, W. S., Denby, L., and Liu, C. (1998). Random Location and Scale Models for Case Data, in preparation.

    Google Scholar 

  • Cleveland, W. S. and Liu, C. (1998a). A Theory of Model Building, in preparation.

    Google Scholar 

  • Cleveland, W. S. and Liu, C. (1998b). Integated Sum-Difference Time Series Models, in preparation.

    Google Scholar 

  • Daniel, C. and Wood, E. S. (1971). Fitting Equations to Data, Wiley, New York.

    MATH  Google Scholar 

  • Draper, D. (1995). Assessment and Propagation of Model Uncertainty, Journal of the Royal Statistical Society, B 57 45–97.

    MathSciNet  MATH  Google Scholar 

  • Dempster, A. P. (1970). Foundation of Statistical Inference, Proceedings of the Symposium of the Foundations of Statistical Inference, March 31 to April 9, 56–81.

    Google Scholar 

  • Draper, D., Hodges, J. S., Mallows, C. L., and Pregibon, D. (1993). Exchangeability and Data Analysis, Journal of the Royal Statistical Society, A 156, Part 1,9–37.

    Article  MathSciNet  MATH  Google Scholar 

  • Edwards, W., Lindman, H., and Savage, L. J. (1963). Bayesian Statistical Infer-ence for Psychological Research, Psychological Review 70, 193–242.

    Article  Google Scholar 

  • Gale, B. T. (1994). Managing Customer Value, MacMillan, New York.

    Google Scholar 

  • Gelfand, A. E. and Smith, A. F. M. (1990). Sampling Based Approaches to Calculating Marginal Densities, Journal of the American Statistical Association 85, 398–409.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A., King, G., and Liu, C. (1998). Multiple Imputation for Multiple Surveys (with discussion), Journal of the American Statistical Association, to appear.

    Google Scholar 

  • Gelman, A., Meng, X-L., and Stern, H. (1996). Posterior Predictive Assessment of Model Fitness Via Realized Discrepancies, Statistica Sinica 6, 733–807.

    MathSciNet  MATH  Google Scholar 

  • Geman, S. and Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and The Bayesian Restoration of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741.

    Article  MATH  Google Scholar 

  • Good, I. J. (1957). Mathematical Tools, Uncertainty and Business Decisions, edited by Carter, C. F., Meredith, G. P., and Shackle, G. L. S., 20–36, Liverpool University Press.

    Google Scholar 

  • Hill, B. M. (1986). Some Subjective Bayesian Considerations in The Selection of Models, Econometric Reviews 4, 191–251.

    Article  Google Scholar 

  • Hill, B. M. (1990). A Theory of Bayesian Data Analysis, Bayesian and Likelihood Methods in Statistics and Econometrics, S. Geiser, J. S. Hodges, S. J. Press and A. Zellner (Editors), 49–73, Elsevier Science Publishers B. V. (North-Holland).

    Google Scholar 

  • Johnson, V. E. (1997). An Alternative to Traditional GPA for Evaluating Student Performance (with discussion), Statistical Science, 12, 251–278.

    Article  Google Scholar 

  • Kass, R. E. and Raftery, A. E. (1995). Bayes Factors, Journal of the American Statistical Association 90, 773–795.

    Article  MATH  Google Scholar 

  • Kass, R. E., Tierney, L., and Kadane, J. B. (1989). Approximate Methods for Assessing Influence and Sensitivity in Bayesian Analysis, Biometrika 76, 663–674.

    Article  MathSciNet  MATH  Google Scholar 

  • Liu, C. (1995). Missing Data Imputation Using the Multivariate t-distribution, The Journal of Multivariate Analysis 53, 139–158.

    Article  MATH  Google Scholar 

  • Liu, C. (1996). Bayesian Robust Multivariate Linear Regression with Incomplete Data, Journal of the American Statistical Association 91, 1219–1227.

    Article  MathSciNet  MATH  Google Scholar 

  • Longford, N. T. (1995). Models for Uncertainty in Educational Testing, Springer, New York.

    Book  MATH  Google Scholar 

  • Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., and Teller, A. H. (1953). Equations of State Calculations by Fast Computing Machines, Journal of Chemical Physics 21, 1087–1091.

    Article  Google Scholar 

  • Metropolis, N. and Ulam, S. (1949). The Monte Carlo Methods, Journal of the American Statistical Association 44, 335–341.

    Article  MathSciNet  MATH  Google Scholar 

  • Naumann, E. and Kordupleski, R. (1995). Customer Value Toolkit, International Thomson Publishing, London.

    Google Scholar 

  • Pinheiro, J., Liu, C., and Wu, Y. (1997). Robust Estimation in Linear Mixed-Effects Models Using the Multivariate t-distribution, Technical Report, Bell Labs.

    Google Scholar 

  • Rubin, D. B. (1976). Inference and Missing Data, Biometrika 63, 581–592.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin, D. B. (1984). Bayesianly Justifiable and Relevant Frequency Calculations for The Applied Statistician, The Annals of Statistics 12 1151–1172.

    Article  MathSciNet  MATH  Google Scholar 

  • Rubin, D. B. (1987). Multiple Imputation for Nonresponse in Surveys, Wiley, New York.

    Book  Google Scholar 

  • Savage, L. J. (1961). The Subjective Basis of Statistical Practice, unpublished book manuscript.

    Google Scholar 

  • Tanner, M. A. and Wong, W. H. (1987). The Calculation of Posterior Distributions by Data Augmentation (with discussion), Journal of the American Statistical Association 82, 528–55’).

    Article  MathSciNet  MATH  Google Scholar 

  • Young, F. W. (1981). Quantitative Analysis of Qualitative Data, Psychometrika 46, 357–388.

    Article  MathSciNet  MATH  Google Scholar 

Reference

  • Best, N.G., Spiegelhalter, D.J., Thomas, A. and Brayne, C.E.G. (1996). Bayesian analysis of realistically complex models. Journal of the Royal Statistical Society, Series A 159, 323–342

    Google Scholar 

  • Dawid, A.P. (1979). Conditional independence in statistical theory (with discussion). Journal of the Royal Statistical Society, Series B41, 1–31.

    MathSciNet  MATH  Google Scholar 

  • Dellaportas, P. and Stephens, D.A. (1995). Bayesian analysis of errors-in-variables regression models. Biometrics 51, 1085–1095.

    Article  MATH  Google Scholar 

  • Gelfand, A.E., Dey, D.K. and Chang, H. (1992). Model determination using predictive distributions with implementation via sampling-based methods. In Bayesian Statistics 4 (eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith), pp. 147–167. Oxford: Oxford University Press.

    Google Scholar 

  • Goldstein, H. and Spiegelhalter, D.J. (1996). Statistical aspects of institutional performance: league tables and their limitations (with discussion). Journal of the Royal Statistical Society, Series A 159

    Google Scholar 

  • Spiegelhalter, D.J., Thomas, A. and Best, N.G. (1995a). Computation on Bayesian graphical models. In Bayesian Statistics 5 (eds. J.M. Bernardo, J.O. Berger, A.P. Dawid and A.F.M. Smith), pp. 407–425. Oxford: Clarendon Press.

    Google Scholar 

  • Spiegelhalter, D.J., Thomas, A., Best, N.G. and Gilks, W.R. (1995b). BUGS Bayesian inference Using Gibbs Sampling: Version 0.5, MRC Biostatistics Unit, Cambridge.

    Google Scholar 

  • Whittaker, J. (1990). Graphical Models in Applied Multivariate Statistics, pp. 7177. Chichester: John Wiley & Sons.

    MATH  Google Scholar 

Reference

  • Bradlow, E.T. (1994), Analysis of Ordinal Survey Data with ‘No Answer’ Responses, Doctoral Dissertation, Department of Statistics, Harvard University.

    Google Scholar 

  • Bradlow, E.T. and Zaslaysky, A.M., A Hierarchical Model for Ordinal Customer Satisfaction Data with “No Answer” Responses, unpublished manuscript.

    Google Scholar 

  • Cleland Alan S. and Alebert V. Bruno (1997), The Market Value Process: Bridging Customer and Shareholder Value, San Francisco: Jossey-Bass Publishers.

    Google Scholar 

  • Gale, Bradley T. (1994), Managing Customer Value: Creating Quality & Service that Customers Can See, New York: The Free Press.

    Google Scholar 

  • Slywotzski, Adrian J. (1996), Value Migration: How to think Several Moves Ahead of the Competition, Boston: Harvard Business School Press.

    Google Scholar 

Additional Reference

  • Cowles, M. K. and Carlin, B. P. (1996). Markov chain Monte Carlo convergence diagnostics: a comparative review, J. Amer. Statist. Assoc., 91, 883–904.

    Article  MathSciNet  MATH  Google Scholar 

  • Gelman, A. and Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences, Statist. Sci., 7, 457–511.

    Article  Google Scholar 

  • Liu, C. and Rubin, D. B. (1996). Markov-normal analysis of iterative simulations before their convergence, J. Econometric, 75, 69–78.

    Article  MATH  Google Scholar 

  • Liu, C. and Rubin, D. B. (1998). Markov-Normal analysis of iterative simulations before their convergence: reconsideration and application, Technical Report, Bell-Labs, Lucent Technologies and Department of Statistics, Harvard Univ.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this paper

Cite this paper

Clark, L.A., Cleveland, W.S., Denby, L., Liu, C. (1999). Modeling Customer Survey Data. In: Gatsonis, C., et al. Case Studies in Bayesian Statistics. Lecture Notes in Statistics, vol 140. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1502-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1502-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98640-1

  • Online ISBN: 978-1-4612-1502-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics