Skip to main content

Microbial Methods for Assessing Contaminant Effects in Sediments

  • Chapter
Reviews of Environmental Contamination and Toxicology

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 159))

Abstract

The significance of sediments for the environmental status of rivers, lakes, and marine habitats has received increasing recognition during the past 30 years. It has become apparent that multiple physical, chemical, and biological exchange processes between water column and sediment exist that may influence transport, distribution, or deposition of hazardous chemicals in both phases and which control the entire spectrum of indigenous biology. To evaluate the environmental risk posed by contaminated sediments, strategies and methods of eco-toxicology are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abukhalaf IK, Covington S, Zimmerman EG, Dickson KL, Masaracchia RA, Donahue MJ (1994) Purification of the 70-kDa heat-shock protein from catfish liver: immunological comparison of the protein in different fish species and its potential use as a stress indicator. Environ Toxicol Chem 13:1251–1257.

    Article  CAS  Google Scholar 

  • Aislabie J, Loutit MW (1986) Accumulation of Cr(III) by bacteria isolated from polluted sediment. Mar Environ Res 20:221–232.

    Article  CAS  Google Scholar 

  • Allard A-S, Renberg L, Neilson AH (1996) Absence of 14C-labelled EDTA and DTPA and the sediment/water partition ratio. Chemosphere 33:577–583.

    Article  CAS  Google Scholar 

  • Allard A-S, Neilson AH (1997) Bioremediation of organic waste sites: a critical review of microbiological aspects. Int Biodeterior Biodegrad 39:253–285.

    Article  CAS  Google Scholar 

  • Amann RI, Ludwig W, Schleifer K-H (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169.

    PubMed  CAS  Google Scholar 

  • Ames BN, Durston WE, Yamasaki E, Lee FD (1973) Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc Natl Acad Sci USA 70:2281–2285.

    Article  PubMed  CAS  Google Scholar 

  • Anderson K, Koopman B, Bitton G (1988) Evaluation of INT-dehydrogenase assay for heavy metal inhibition of activated sludge. Water Res 22:349–353.

    Article  CAS  Google Scholar 

  • Ankley GT, Benoit DA, Hoke RA, Leonard EN, West CW, Phipps GL, Mattson VR, Anderson LA (1993) Development and evaluation of test methods for benthic invertebrates and sediments: effects of flow rate and feeding on water quality and exposure conditions. Arch Environ Contam Toxicol 25:12–19.

    Article  CAS  Google Scholar 

  • Ankley GT, Erickson RJ, Sheedy BR, Kosian PA, Mattson VR, Cox JS (1997) Evaluation of models for predicting the phytotoxic potency of polycyclic aromatic hydrocarbons. Aquat Toxicol 37:37–50.

    Article  CAS  Google Scholar 

  • Arvin E, Dyreborg S, Menck C, Olsen J (1994) A mini-nitrification test for toxicity screening, Minntox. Water Res 28:2029–2031.

    Article  CAS  Google Scholar 

  • Atlas RM, Horowitz A, Krichevski M, Bej AK (1991) Response of microbial populations to environmental disturbance. Microb Ecol 22:249–256.

    Article  Google Scholar 

  • Avaniss-Aghajani E, Jones K, Chapman D, Brunck C (1994) A molecular technique for identification of bacteria using small subunit ribosomal RNA sequences. Biotechniques 17:144–149.

    PubMed  CAS  Google Scholar 

  • Awong J, Bitton G, Koopman B (1985) ATP, oxygen uptake rate and INT-dehydrogenase activity of actinomycete foams. Water Res 19:917–921.

    Article  CAS  Google Scholar 

  • Ayoub GM, Koopman B, Bitton G, Riedesel K (1995) Heavy metal detoxification by trimercapto-s-triazine (TMT) as evaluated by a bacterial enzyme assay. Environ Toxicol Chem 14:193–196.

    CAS  Google Scholar 

  • Babich H, Stotzky G (1983) Temperature, pH, salinity, hardness, and particulates mediate nickel toxicity to eubacteria, an actinomycete, and yeasts in lake, simulated estuarine, and sea waters. Aquat Toxicol 3:195–208.

    Article  CAS  Google Scholar 

  • Bae Yoon W, Rosson RA (1990) Improved method of enumeration of attached bacteria for study of fluctuation in the abundance of attached and free-living bacteria in response to diel variation in seawater turbidity. Appl Environ Microbiol 56:595–600.

    Google Scholar 

  • Baker JH, Griffiths RP (1984) Effect of oil on bacterial activity in marine and freshwater sediments. Aqualine:546–551.

    Google Scholar 

  • Baldi F, Boudou A, Ribeyre F (1992) Response of a freshwater bacterial community to mercury contamination (HgCl2 and CH3HgCl) in a controlled system. Arch Environ Contam Toxicol 22:439–444.

    Article  CAS  Google Scholar 

  • Barkay T, Fouts DL, Olson BH (1985) Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Appl Environ Microbiol 49:686–692.

    PubMed  CAS  Google Scholar 

  • Barkay T, Liebert C, Gillman M (1989) Hybridization of DNA probes with whole-community genome for detection of genes that encode microbial responses to pollutants: mer genes and Hg2+ resistance. Appl Environ Microbiol 55:1574–1577.

    PubMed  CAS  Google Scholar 

  • Barkay T, Turner R, Saouter E, Horn J (1992) Mercury biotransformations and their potential for remediation of mercury contamination. Biodegradation 3:147–159.

    Article  CAS  Google Scholar 

  • Barry GF (1986) Permanent insertion of foreign genes into the chromosomes of soil bacteria. Biotechnology 4:446–449.

    Article  CAS  Google Scholar 

  • Baudo R (1990) Sediment sampling, mapping, and data analysis. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: Chemistry and Toxicity of In-Place Pollutants. Lewis Publishers, Ann Arbor, MI, pp 15–60.

    Google Scholar 

  • Bauer JE, Capone DG (1985a) Degradation and mineralization of the polycyclic aromatic hydrocarbons anthracene and naphthalene in intertidal marine sediments. Appl Environ Microbiol 50:81–90.

    CAS  Google Scholar 

  • Bauer JE, Capone DG (1985b) Effects of four aromatic pollutants on microbial glucose metabolism and thymidine incorporation in marine sediments. Appl Environ Microbiol 49:828–835.

    CAS  Google Scholar 

  • Becker PM, Dott W (1995) Functional analysis of communities of aerobic heterotrophic bacteria from hydrocarbon-contaminated sites. Microb Ecol 30:285–296.

    Article  Google Scholar 

  • Becker PM, Wand H, Weissbrodt E, Kuschk P, Stottmeister U (1997) Distribution of contaminants and the self-purifying potential for aromatic compounds in a carbonization wastewater deposit. Chemosphere 34:731–748.

    Article  CAS  Google Scholar 

  • Belkin S, van Dyk TK, Vollmer AC, Smulski DR, LaRossa RA (1996) Monitoring sub-toxic environmental hazards by stress-responsive luminous bacteria. Environ Toxicol Water Qual 11:179–185.

    Article  CAS  Google Scholar 

  • Belkin S, Smulski DR, Dadon S, Vollmer AC, van Dyk TK, Larossa RA (1997) A panel of stress-responsive luminous bacteria for the detection of selected classes of toxicants. Water Res 31:3009–3016.

    Article  CAS  Google Scholar 

  • Belliveau BH, Starodub ME, Trevors JT (1991) Occurrence of antibiotic and metal resistance and plasmids in Bacillus strains isolated from marine sediments. Can J Microbiol 37:513–520.

    Article  PubMed  CAS  Google Scholar 

  • Benoit DA, Mattson VR, Olson DL (1982) A continuous-flow mini-diluter system for toxicity testing. Water Res 16:457–464.

    Article  CAS  Google Scholar 

  • Benoit DA, Phipps GL, Ankley GT (1993) A sediment testing intermittent renewal system for the automated renewal of overlying water in toxicity tests with contaminated sediments. Water Res 27:1403–1412.

    Article  CAS  Google Scholar 

  • Benton MJ, Malott ML, Knight SS, Cooper CM, Benson WH (1995) Influence of sediment composition on apparent toxicity in a solid-phase test using bioluminescent bacteria. Environ Toxicol Chem 14:411–414.

    Article  CAS  Google Scholar 

  • Bilinski H, Kwokal Z, Branica M (1992) Processes affecting the rate of mercury in the Krka River Estuary. Water Res 26:1243–1253.

    Article  CAS  Google Scholar 

  • Billen G, Joiris C, Wollast R (1974) A bacterial methylmercury-mineralizing activity in river sediments. Water Res 8:219–225.

    Article  CAS  Google Scholar 

  • Bitton G, Koopman B (1992) Bacterial and enzymatic bioassays for toxicity testing in the environment. Rev Environ Contam Toxicol 125:1–22.

    Article  PubMed  CAS  Google Scholar 

  • Bitton G, Koopman B, Agami O (1992a) MetPADTM: a bioassay for rapid assessment of heavy metal toxicity in wastewater. Water Environ Res 64:834–836.

    Article  CAS  Google Scholar 

  • Bitton G, Campbell M, Koopman B (1992b) MetPAD: a bioassay kit for the specific determination of heavy metal toxicity in sediments from hazardous waste sites. Environ Toxicol Water Qual 7:323–328.

    Article  CAS  Google Scholar 

  • Bitton G, Koopman B, Jung K, Voiland G, Kotob M (1993) Modification of the standard epifluorescence microscopic method for total bacterial counts in environmental samples. Water Res 27:1109–1112.

    Article  Google Scholar 

  • Bitton G, Jung K, Koopman B (1994) Evaluation of a microplate assay specific for heavy metal toxicity. Arch Environ Contam Toxicol 27:25–28.

    Article  PubMed  CAS  Google Scholar 

  • Blessing B, Süssmuth R (1993) Stimulating effects in bacterial toxicity tests—a source of error in evaluating the risk posed by chemicals. Water Res 27:225–229.

    Article  CAS  Google Scholar 

  • Blum DJW, Speece RE (1991a) A database for chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations. J Water Pollut Control Fed 63:198–207.

    CAS  Google Scholar 

  • Blum DJW, Speece RE (1991b) Quantitative structure-relationships for chemical toxicity to environmental bacteria. Ecotoxicol Environ Saf 22:198–224.

    Article  CAS  Google Scholar 

  • Bochner B (1989) “Breathprints” at the microbial level. Am Soc Microbiol 55:536–539.

    Google Scholar 

  • Bogan BW, Schoenike B, Lamar RT, Cullen D (1996) Manganese peroxidase mRNA and enzyme activity levels during bioremediation of polycyclic aromatic hydrocarbon-contaminated soil with Phanerochaete chrysosporium. Appl Environ Microbiol 62:2381–2386.

    PubMed  CAS  Google Scholar 

  • Boivin-Jahns V, Bianchi A, Ruimy R, Garcin J, Daumas S, Christen R (1995) Comparison of phenotypical and molecular methods for the identification of bacterial strains isolated from a deep subsurface environment. Appl Environ Microbiol 61:3400–3406.

    PubMed  CAS  Google Scholar 

  • Bonin P, Omnés P (1995) Détermination de l’activité dénitrifiante en milieu marin par la technique de blocage par l’acétylène et le marquage isotopique. Océanis 21:277–285.

    CAS  Google Scholar 

  • Bonnet C, Volat B, Bardin R, Degranges V, Montuelle B (1997) Use of immunofluorescence technique for studying a Nitrobacter population from wastewater treatment plant following discharge in river sediments: first experimental data. Water Res 31: 661–664.

    Article  CAS  Google Scholar 

  • Boon PI (1989) Organic matter degradation and nutrient regeneration in Australian freshwaters: I. Methods for exoenzyme assays in turbid aquatic environments. Arch Hydrobiol 115:339–359.

    CAS  Google Scholar 

  • Botsford JL, Rivera J, Navarez J, Riley R, Wright T, Baker R (1997) Assay for toxic chemicals using bacteria. Bull Environ Contam Toxicol 59:1000–1009.

    Article  PubMed  CAS  Google Scholar 

  • Bowman GT, Delfino JJ (1980) Sediment oxygen demand techniques: a review and comparison of laboratory in situ systems. Water Res 14:491–499.

    Article  CAS  Google Scholar 

  • Boyd EM, Meharg AA, Wright J, Killham K (1997) Assessment of toxicological interactions of benzene and its primary degradation products (catechol and phenol) using a lux-modified bacterial bioassay. Environ Toxicol Chem 16:849–856.

    CAS  Google Scholar 

  • Brewer WS, Abernathy AR, Paynter MJB (1977) Oxygen consumption in freshwater sediments. Water Res 11:471–473.

    Article  CAS  Google Scholar 

  • Broman D, Näf C, Axelman J, Bandh C, Pettersen H, Johnstone R, Wallberg P (1996) Significance of bacteria in marine waters for the distribution of hydrophobic organic contaminants. Environ Sci Technol 30:1238–1241.

    Article  CAS  Google Scholar 

  • Brouwer A, Murphy T, McArdle L (1990) A sediment-contact bioassay with Photobacterium phosphoreum. Environ Toxicol Chem 9:1353–1358.

    Article  CAS  Google Scholar 

  • Brown JS, Rattray EAS, Paton GI, Reid G, Caffoor I, Killham K (1996) Comparative assessment of the toxicity of a papermill effluent by respiratory and a luminescence-based bacterial assay. Chemosphere 32:1553–1561.

    Article  CAS  Google Scholar 

  • Bulich AA, Greene MW (1979) Use of luminescent bacteria for biological monitoring of water quality. In: Schram E, Stanley P (eds) International Symposium on Analytical Applications of Bioluminescence and Chemiluminescence. State Printing and Publishing, Westlake Village, BC, Canada, pp 193–211.

    Google Scholar 

  • Burgess RM, Charles JB, Kuhn A, Ho KT, Patton LE, McGovern DG (1997) Development of a cation-exchange methodology for marine toxicity identification evaluation applications. Environ Toxicol Chem 16:1203–1211.

    Article  CAS  Google Scholar 

  • Burke BE, Wing Tsang K, Pfister RM (1991) Cadmium sorption by bacteria and freshwater sediment. J Ind Microbiol 8:201–208.

    CAS  Google Scholar 

  • Burkhard LP, Ankley GT (1989) Identifying toxicants: NETAC’s toxicity-based approach. Environ Sci Technol 23:1438–1443.

    Article  CAS  Google Scholar 

  • Burton GAJ, Lanza GR (1986) Variables affecting two electron transport system assays. Appl Environ Microbiol 51:931–937.

    PubMed  CAS  Google Scholar 

  • Burton GAJ, Giddings TH, DeBrine P, Fall R (1987) High incidence of selenite-resistant bacteria from a site polluted with selenium. Appl Environ Microbiol 53:185–188.

    CAS  Google Scholar 

  • Burton GAJ (1991) Assessing the toxicity of freshwater sediments. Environ Toxicol Chem 10:1585–1627.

    Article  CAS  Google Scholar 

  • Cairns J Jr, Heath AG, Parker BC (1975) The effects of temperature upon the toxicity of chemicals to aquatic organisms. Hydrobiologia 47:135–171.

    Article  CAS  Google Scholar 

  • Cairns J Jr, Smith EP (1989) Developing a statistical support system for environmental hazard evaluation. Hydrobiologia 184:143–151.

    CAS  Google Scholar 

  • Cairns J Jr, McCormick PV, Niederlehner BR (1992) Estimating ecotoxicological risk and impact using indigenous aquatic microbial communities. Hydrobiologia 237:131–145.

    Article  CAS  Google Scholar 

  • Campbell M, Bitton G, Koopman B (1993) Toxicity testing of sediment elutriates based on inhibition of alpha-glucosidase biosynthesis in Bacillus licheniformis. Arch Environ Contam Toxicol 24:469–472.

    Article  CAS  Google Scholar 

  • Candido EPM, Jones D (1996) Transgenic Caenorhabditis elegans strains as biosensors. Trends Biotechnol 14:125–129.

    Article  PubMed  CAS  Google Scholar 

  • Capone DG, Reese DD, Keine RP (1983) Effects of metals on methanogenesis, sulfate reduction, carbon dioxide evolution, and microbial biomass in anoxic salt marsh sediments. Appl Environ Microbiol 45:1586–1591.

    PubMed  CAS  Google Scholar 

  • Carson DB, Saeger VW, Gledhill WE (1990) Use of microcosms versus conventional biodegradation testing for estimating chemical persistence. In: Landis WG, van der Schalie WH (eds) Aquatic Toxicology and Risk Assessment, Vol. 13. ASTM STP 1096. American Society for Testing and Materials, Philadelphia, pp 48–59.

    Google Scholar 

  • Caux P-Y, Moore DRJ (1997) A spreadsheet program for estimating low toxic effects. Environ Toxicol Chem 16:802–806.

    Article  CAS  Google Scholar 

  • Chan Y-K, Knowles R (1979) Measurement of denitrification in two freshwater sediments by an in situ acetylene inhibition method. Appl Environ Microbiol 37:1067–1072.

    CAS  Google Scholar 

  • Chapman PM, Fairbrother A, Brown D (1998) A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem 17:99–108.

    Article  CAS  Google Scholar 

  • Chevillon C (1994) Auto-Microtox, surveillance continue de toxicité des eaux par bacteries bioluminescentes: principes et resultats. In: Proceedings, Colloque Europeen—Le Recours Biologique pour la Surveillance en Continue de la Qualité des Eaux, Nancy, France, Octobre 1994, pp 51–56.

    Google Scholar 

  • Chrost RJ, Krambeck HJ (1986) Fluorescence correction for measurements of enzyme activity in natural waters using methylumbelliferyl-substrates. Arch Hydrobiol 106: 79–90.

    CAS  Google Scholar 

  • Chrost RJ (1991) Microbial Enzymes in Aquatic Environments. Springer-Verlag, New York.

    Book  Google Scholar 

  • Chrost RJ (1992) Significance of bacterial ectoenzymes in aquatic environments. Hydrobiologia 243/244:61–70.

    Article  Google Scholar 

  • Chrost RJ, Rai H (1993) Ectoenzyme activity and bacterial secondary production in nutrient-impoverished and nutrient-enriched freshwater mesocosms. Microb Ecol 25: 131–150.

    Article  CAS  Google Scholar 

  • Cochrane BJ, Mattley YD, Snell TW (1994) Polymerase chain reaction as a tool for developing stress protein probes. Environ Toxicol Chem 13:1221–1229.

    Article  CAS  Google Scholar 

  • Cole JJ, Findlay S, Pace ML (1988) Bacterial production in fresh and saltwater ecosys-tems: a cross-system overview. Mar Ecol Prog Ser 43:1–10.

    Article  Google Scholar 

  • Corbisier P, Nuyts GJG, Mergeay M, Silver S (1993) LuxAB gene fusions with the arsenic and cadmium resistance operons of Staphylococcus aureus plasmid pI258. FEMS Microbiol Lett 110:231–238.

    Article  PubMed  CAS  Google Scholar 

  • Couillard D, Mercier G (1993) Removal of metals and fate of N and P in the bacterial leaching of aerobically digested sewage sludge. Water Res 27:1227–1235.

    Article  CAS  Google Scholar 

  • Cowen JP, Hui Li Y (1991) The influence of a changing bacterial community on trace metal scavenging in a deep-sea particle plume. J Mar Res 49:517–542.

    Article  CAS  Google Scholar 

  • Crane M (1997) Research needs for predictive multispecies tests in aquatic toxicology. Hydrobiologia 346:149–155.

    Article  CAS  Google Scholar 

  • Cunningham PA (1986) A review of toxicity testing and degradation studies used to predict the effects of diflubenzuron (Dimilin®) on estuarine crustaceans. Environ Pol-lut (Series A) 40:63–86.

    Article  CAS  Google Scholar 

  • Dale NG (1974) Bacteria in intertidal sediments: factors related to their distribution. Limnol Oceanogr 19:509–518.

    Article  Google Scholar 

  • Day KE, Dutka BJ, Kwan KK, Batista N, Reynoldson TB, Metcalfe-Smith JL (1995) Correlations between solid-phase microbial screening assays, whole-sediment toxicity tests with macroinvertebrates and in situ benthic community structure. J Great Lakes Res 21:192–206.

    Article  CAS  Google Scholar 

  • DeVevey E, Bitton G, Rossel D, Ramos LD, Guerrero LM, Tarradellas J (1993) Concentration and bioavailability of heavy metals in sediments in Lake Yojoa (Honduras). Bull Environ Contam Toxicol 50:253–259.

    CAS  Google Scholar 

  • DeVicente A, Avilés M, Codina JC, Borrego JJ, Romero P (1990) Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. J Appl Bacteriol 68:625–632.

    Article  CAS  Google Scholar 

  • DeWit R (1995) Measurements of sedimentary gradients of pore water species, by use of microelectrodes. Calculations of microbial metabolic processes in the sediments. Ocanis 21:287–297.

    Google Scholar 

  • Dean-Ross D, Mills AL (1989) Bacterial community structure and function along a heavy metal gradient. Appl Environ Microbiol 55:2002–2009.

    PubMed  CAS  Google Scholar 

  • Dillon TM, Moore DW, Jarvis AS (1994) The effects of storage temperature and time on sediment toxicity. Arch Environ Contam Toxicol 27:51–53.

    Article  CAS  Google Scholar 

  • Di-Ruggiero J, Gounot A-M (1990) Microbial manganese reduction mediated by bacterial strains isolated from aquifer sediments. Microb Ecol 20:53–63.

    Article  CAS  Google Scholar 

  • Drahos DJ, Hemming BC, McPherson S (1986) Tracking recombinant organisms in the environment: beta-galactosidase as a selectable non-antibiotic marker for fluorescent pseudomonads. Biotechnology 4:439–444.

    Article  CAS  Google Scholar 

  • Dufour P, Colon M (1992) The tetrazolium reduction method for assessing the viability of individual bacterial cells in aquatic environments: improvements, performance and applications. Hydrobiologia 232:211–218.

    Article  CAS  Google Scholar 

  • Dutka BJ, Kwan KK (1981) Comparison of three microbial toxicity screening tests with the Microtox test. Bull Environ Contam Toxicol 27:753–757.

    Article  PubMed  CAS  Google Scholar 

  • Dutka BJ, Walsh K, Kwan KK, El Shaarawi A, Liu DL, Thompson K (1986) Priority site selection for degraded areas based on microbial and toxicant screening tests. Water Pollut Res J Can 21:267–282.

    CAS  Google Scholar 

  • Dutka BJ, Kwan KK (1988) Battery of screening tests approach applied to sediment extracts. Toxic Assess 3:303–314.

    Article  CAS  Google Scholar 

  • Dutka BJ, Teichgräber K, Lifshitz R (1995) A modified SOS-Chromotest procedure to test for genotoxicity and cytotoxicity in sediments directly without extraction. Chemosphere 31:3273–3289.

    Article  PubMed  CAS  Google Scholar 

  • Dutton RG, Bitton G, Koopman B, Agami O (1990) Effect of environmental toxicants on enzyme biosynthesis: a comparison of beta-galactosidase, alpha-glucosidase and tryptophanase. Arch Environ Contam Toxicol 19:395–398.

    Article  PubMed  CAS  Google Scholar 

  • Eaton RW, Chapman PJ (1995) Formation of indigo and related compounds from indolecarboxylic acids by aromatic acid-degrading bacteria: chromogenic reactions for cloning genes encoding dioxygenases that act on aromatic acids. J Bacteriol 177: 6983–6988.

    PubMed  CAS  Google Scholar 

  • Eismann F, Becker F, Kuschk P, Stottmeister U (1996) Alternative electron acceptors in microbial coal-conversion wastewater treatment. Appl Microbiol Biotechnol 46: 604–609.

    Article  CAS  Google Scholar 

  • Eismann F, Kuschk P, Stottmeister U (1997) Microbial phenol degradation: temperature-inhibition relationships. Environ Sci Pollut Res 4:203–207

    Article  CAS  Google Scholar 

  • Ellis RJ, Thompson IP, Bailey MJ (1995) Metabolic profiling as a means of characterizing plant-associated microbial communities. FEMS Microbiol Ecol 16:9–18.

    Article  CAS  Google Scholar 

  • Ewald G, Berglund O, Svensson JM (1997) Effect of oligochaete bioturbation on sediment accumulation of 2,2’,4,4’-tetrachlorobiphenyl. Ecotoxicol Environ Saf 36:66–71.

    Article  PubMed  CAS  Google Scholar 

  • Fabiano M, Danovaro R, Magi E, Mazzucotelli A (1994) Effects of heavy metals on benthic bacteria in coastal marine sediments: a field result. Mar Pollut Bull 28:18–23.

    Article  CAS  Google Scholar 

  • Fairchild JF, La Point TW, Zajicek JL, Nelson MK, Dwyer FJ, Lovely PA (1992) Population-, community-and ecosystem-level responses of aquatic mesocosms to pulsed doses of a pyrethroid insecticide. Environ Toxicol Chem 11:115–129.

    Article  CAS  Google Scholar 

  • Feind D, Zieris F-J, Huber W (1988) Effects of sodium pentachlorophenate on the ecology of a freshwater model ecosystem. Environ Pollut 50:211–223.

    Article  PubMed  CAS  Google Scholar 

  • Felkner IC, Laumbach AD, Harter ML (1981) Development of a Bacillus subtilis system to screen carcinogens/mutagens: DNA-damaging and mutation assays. In: Felkner IC (ed) Microbial Tests for Chemical Carcinogens. Marcel Dekker, New York/Basel, pp 93–120.

    Google Scholar 

  • Felkner IC, Worthy B, Christison T, Chaisson C, Kurtz J (1989) Laser/microbe bioassay systems. In: Cowgill UM, Williams LR (eds) Aquatic Toxicology and Hazard Assessment, Vol. 12. ASTM STP 1027. American Society for Testing and Materials, Philadelphia, pp 95–103.

    Chapter  Google Scholar 

  • Felkner IC, Worthy BE (1989) Newest approaches to quantitative assessment of bioactive organotins. Chem Speciation Bioavailability 1:1–18.

    Google Scholar 

  • Felkner IC, Worthy BE (1992) Quantitative bioassay using laser-monitored bacteria to assess toxicology and metabolism of bioactive group IV compounds. Sci Total Environ 112:177–188.

    Article  PubMed  CAS  Google Scholar 

  • Findlay S (1995) Importance of surface-subsurface exchange in stream ecosystems: the hyporheic zone. Limnol Oceanogr 40:159–164.

    Article  CAS  Google Scholar 

  • Flemming CA, Trevors JT (1988) Effect of copper on nitrous oxide reduction in freshwater sediment. Water Air Soil Pollut 40:391–397.

    CAS  Google Scholar 

  • Hemming CA, Trevors JT (1989) Copper toxicity in freshwater sediment and Aeromonas hydrophila cell suspensions measured using an 02 electrode. Toxic Assess 4:473–485.

    Article  Google Scholar 

  • Fosset C, Bianchi M (1995) Techniques de mesure des processus de nitrification en milieu marin. Océanis 21:261–276.

    Google Scholar 

  • Fredrickson HL, Cappenberg TE, Klöppel K-D, van Tongeren O, DeLeeuw JW (1993) Polar lipid analysis as a means to profile Lake Venten’s microbial community structures. In: Guerrero R, Pedrs-Alio C (eds) Trends in Microbial Ecology. Spanish Society for Microbiology, pp 363–366.

    Google Scholar 

  • Fuhr A, Kubiak R (1996) Critical aspects of profiling bacterial communities in soil using the denaturating gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA sequences. In: Proceedings, Pesticides, Soil Microbiology and Soil Quality-2nd International Symposium on Environmental Aspects of Pesticide Microbiology, SETAC, Beaune, France, 7–11 July 1996, pp 54–56.

    Google Scholar 

  • Fuhrman JA, Azam F (1982) Thymidine incorporation as a measure of heterotrophic bacterioplankton production in marine surface waters: evaluation of field results. Mar Biol 66:109–120.

    Article  Google Scholar 

  • Fujita K, Iwahashi H, Kodama O, Komatsu Y (1996) Induction of heat-shock proteins in the presence of thiuram in Saccharomyces cerevisiae—for evaluating the potential toxic risks in pollutants. Water Res 30:2102–2106.

    Article  CAS  Google Scholar 

  • G-Toth L, Carillo P, Cruz-Pizarro L (1995) Respiratory electron transport system (ETS)—activity of the plankton and biofllm in the high-mountain lake La Caldera (Sierra Nevada, Spain). Arch Hydrobiol 135:65–78.

    CAS  Google Scholar 

  • Gala WR, Giesy JP (1994) Flow cytometric determination of the photoinduced toxicity of anthracene to the green alga Selenastrum capricornutum. Environ Toxicol Chem 13:831–840.

    CAS  Google Scholar 

  • Garland JL, Mills AL (1991) Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl Environ Microbiol 57:2351–2359.

    PubMed  CAS  Google Scholar 

  • Garland JL (1997) Analysis and interpretation of community-level physiological profiles in microbial ecology. FEMS Microbiol Ecol 24:289–300.

    Article  CAS  Google Scholar 

  • Gemaey K, Verschuere L, Luyten L, Verstraete W (1997) Fast and sensitive acute toxicity detection with an enrichment nitrifying culture. Water Environ Res 69:1163–1169.

    Article  Google Scholar 

  • Ghosh SK, Doctor PB, Bhatnagar VK, Yadav S, Derasari A, Kulkarni PK, Kashyap SK (1997) Response of three microbial test systems to pesticides. Bull Environ Contam Toxicol 58:482–488.

    Article  PubMed  CAS  Google Scholar 

  • Giesy JP, Hoke RA (1990) Freshwater sediment quality criteria: toxicity bioassessment. In: Baudo R, Giesy JP, Muntau H (eds) Sediments: Chemistry and Toxicity of In-Place Pollutants. Lewis Publishers, Ann Arbor, MI, pp 265–348.

    Google Scholar 

  • Gilbert F, Stora G, Bonin P, LeDréau Y, Mille G, Bertrand J-C (1997) Hydrocarbon influence on denitrification in bioturbated Mediterranean coastal sediments. Hydrobiologia 345:67–77.

    Article  CAS  Google Scholar 

  • Gillett JW, Knittel MD, Jolma E, Coulombe R (1983) Applicability of microbial toxicity assays to assessment problems. Environ Toxicol Chem 2:185–193.

    Article  CAS  Google Scholar 

  • Gillham RW, Starr RC, Miller DJ (1990) A device for in situ determination of geochemi-cal transport parameters. 2. Biochemical reactions. Ground Water 28:858–862.

    Article  CAS  Google Scholar 

  • Gilmour CC, Henry EA (1991) Mercury methylation in aquatic systems affected by acid deposition. Environ Pollut 71:131–169.

    Article  PubMed  CAS  Google Scholar 

  • Gilmour CC, Henry EA, Mitchell R (1992) Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol 26:2281–2287.

    Article  CAS  Google Scholar 

  • Goulder R, Blanchard AS, Sanderson PL, Wright B (1980) Relationship between hetero-trophic bacteria and pollution in an industrialized estuary. Water Res 14:591–601.

    Article  Google Scholar 

  • Gounot A-M (1994) Microbial oxidation and reduction of manganese: consequences in groundwater and applications. FEMS Microbiol Rev 14:339–350.

    Article  PubMed  CAS  Google Scholar 

  • Greer C, Masson L, Comeau Y, Brousseau R, Samson R (1993) Application of molecular biology techniques for isolating and monitoring pollutant-degrading bacteria. Water Pollut Res J Can 28:275–287.

    Google Scholar 

  • Guhl W (1994) Modéles ecologiques aquatiques pour une evaluation ameliorée du risqué de l’environnement. In: Proceedings, Colloque Europeen—Le Recours Biologique pour la Surveillance en Continu de la Qualité des Eaux, Nancy, France, Octobre 1994, pp 125–130.

    Google Scholar 

  • Haeni H, Gupta S (1984) Choice of an extractant for simulating the availability and absorption of heavy metals in plants. In: L’Hermite R, Ott H (eds) Processing and Use of Sewage Sludge. D. Reidel, Dordrecht, The Netherlands, pp 387–395.

    Google Scholar 

  • Haeni H, Gupta S (1986) Chemical methods for the biological characterization of metal in sludge and soil. In: L’Hermite R (ed) Processing the Use of Organic Sludge and Liquid Agricultural Wastes. D. Reidel, Dordrecht, The Netherlands, pp 157–167.

    Chapter  Google Scholar 

  • Harkay GA, Landrum BF, Klaine SJ (1994) Comparison of whole-sediment, elutriate and pore-water exposures for use in assessing sediment-associated organic contaminants in bioassays. Environ Toxicol Chem 13:1315–1329.

    Article  Google Scholar 

  • Heitkamp MA, Cerniglia CE (1987) Effects of chemical structure and exposure on the microbial degradation of polycyclic aromatic hydrocarbons in freshwater and estuarine ecosystems. Environ Toxicol Chem 6:535–546.

    Article  CAS  Google Scholar 

  • Heitzer A, Webb OF, Thonnard JE, Sayler GS (1992) Specific and quantitative assessment of naphthalene and salicylate bioavailability by using a catabolic reporter bacterium. Appl Environ Microbiol 58:1839–1846.

    PubMed  CAS  Google Scholar 

  • Heitzer A, Sayler GS (1993) Monitoring the efficacy of bioremediation. Trends Biotechnol 11:334–343.

    Article  PubMed  CAS  Google Scholar 

  • Helma C, Mersch-Sundermann V, Houk VS, Glasbrenner U, Klein C, Wenquing L, Kassie F, Schulte-Hermann R, Knasmüller S (1996) Comparative evaluation of four bacterial assays for the detection of genotoxic effects in dissolved water phases of aqueous matrices. Environ Sci Technol 30:897–907.

    Article  CAS  Google Scholar 

  • Henriet C, Lévi Y, Coutant J-P (1990) Automatisation d’un test de toxicité aigue utilisant des bactéries luminescentes. L’Eau l’Industrie les Nuisances 140:80–82.

    CAS  Google Scholar 

  • Henrysson T, Mattiasson B (1993) A microbial biosensor system for dihalomethanes. Biodegradation 4:101–105.

    Article  PubMed  CAS  Google Scholar 

  • Hiraishi A (1988) Respiratory quinone profiles as tool for identifying different bacterial populations in activated sludge. J Gen Appl Microbiol 34:39–56.

    Article  CAS  Google Scholar 

  • Ho KT, McKinney RA, Kuhn A, Pelletier MC, Burgess RM (1997) Identification of acute toxicants in New Bedford Harbour sediments. Environ Toxicol Chem 16:551–558.

    Article  CAS  Google Scholar 

  • Holben WE, Calabrese VGM, Harris D, Ka JO, Tiedje JM (1993) Analysis of structure and selection in microbial communities by molecular methods. In: Guerrero R, Pedros-Alio C (eds) Trends in Microbial Ecology. Spanish Society for Microbiology, pp 367–370.

    Google Scholar 

  • Holben WE, Harns D (1995) DNA-based monitoring of total bacterial community structure in environmental samples. Mol Ecol 4:627–631.

    Article  PubMed  CAS  Google Scholar 

  • Holm PE, Nielsen PH, Albrechtsen H-J, Christensen TH (1992) Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Appl Environ Microbiol 58:3020–3026.

    PubMed  CAS  Google Scholar 

  • Hoppe H-G (1983) Significance of exoenzymatic activities in the ecology of brackish water: measurements by means of methylumbelliferyl-substrates. Mar Ecol Prog Ser 11:299–308.

    Article  CAS  Google Scholar 

  • Hornberger GM, Mills AL, Herman JS (1992) Bacterial transport in porous media: evalu-ation of a model using laboratory observations. Water Resour Res 28:915–938.

    Article  Google Scholar 

  • Hornor SG, Hilt BA (1985) Distribution of zinc-tolerant bacteria in stream sediments. Hydrobiologia 128:155–160.

    Article  CAS  Google Scholar 

  • Houba C, Remade J (1980) Composition of the saprophytic bacterial communities in freshwater systems contaminated by heavy metals. Microbiol Ecol 6:55–69.

    Article  CAS  Google Scholar 

  • Hu H-Y, Fujie K, Tanaka H, Makabe T, Urano K (1997) Respiratory quinone profile as a tool for refractory chemical biodegradation study. Water Sci Technol 35:103–110.

    CAS  Google Scholar 

  • Hyun C-K, Tamiya E, Takeuchi T, Karube I, Inoue N (1993) A novel BOD sensor based on bacterial luminescence. Biotechnol Bioeng 41:1107–1111.

    Article  PubMed  CAS  Google Scholar 

  • Jacobs MW, Delfino JJ, Bitton G (1992) The toxicity of sulfur to Microtox from acetoni-trile extracts of contaminated sediments. Environ Toxicol Chem 11:1137–1143.

    Article  CAS  Google Scholar 

  • Jain CK, Ram D (1997a) Adsorption of lead and zinc on bed sediments of the river Kali. Water Res 31:154–162.

    Article  CAS  Google Scholar 

  • Jain CK, Ram D (1997b) Adsorption of metal ions in bed sediments. Hydrol Sci 42: 713–723.

    Article  CAS  Google Scholar 

  • Johnsen K, Andersen S, Jacobsen CS (1996) Evaluation of classical phenotypic tests, API20NE, Biolog GN and REP-PCR to assess diversity among fluorescent pseudomonas. In: Proceedings, Pesticides, Soil Microbiology and Soil Quality-2nd International Symposium on Environmental Aspects of Pesticide Microbiology, SETAC, Beaune, France, 7–11 July 1996, pp 57–58.

    Google Scholar 

  • Johnson BT (1992) An evaluation of a genotoxicity assay with liver S9 for activation and luminescent bacteria for detection. Environ Toxicol Chem 11:473–480.

    Article  CAS  Google Scholar 

  • Jones JG, Simon BM (1984) Measure of microbial turnover of carbon in anoxic freshwa-ter sediments: cautionary comments. J Microbiol Methods 3:47–55.

    Article  CAS  Google Scholar 

  • Jones JB Jr (1995) Factors controlling hyporheic respiration in a desert stream. Freshwater Biol 34:91–99.

    Article  Google Scholar 

  • Jop KM, Kendall TZ, Askew AM, Foster RB (1991) Use of fractionation procedures and extensive chemical analysis for toxicity identification of a chemical plant effluent. Environ Toxicol Chem 10:981–990.

    Article  CAS  Google Scholar 

  • Jorgensen BB (1978) A comparison of methods for the quantification of bacterial sulfate reduction in coastal marine sediments. 1. Measurement with radiotracer techniques. Geomicrobiol J 1:11–27.

    Article  Google Scholar 

  • Kang H, Freeman C (1997) Measurement of phosphomonoesterase activity in wetland sediments—a sensitive method using HPLC and UV detection. Arch Hydrobiol 140: 411–417.

    CAS  Google Scholar 

  • Karl DM (1981) Simultaneous rates of ribonucleic acid and deoxyribonucleic acid syntheses for estimating growth and cell division of aquatic microbial communities. Appl Environ Microbiol 42:802–810.

    PubMed  CAS  Google Scholar 

  • Katayama A, Kuwatsuka S (1991) Effect of pesticides on cellulose degradation in soil under upland and flooded conditions. Soil Sci Plant Nutr 37:1–6.

    Article  CAS  Google Scholar 

  • Katayama A, Kaneda E, Mihara K, Kuwatsuka S (1992) Effects of pesticides on interaction among cellulose decomposition, microflora and soil conditions: insertion of cellulose sheets in flooded soil samples. Soil Sci Plant Nutr 38:169–177.

    Article  CAS  Google Scholar 

  • Keddy CJ, Greene JC, Bonnell MA (1995) Review of whole-organism bioassays: soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol Environ Saf 30:221–251.

    Article  PubMed  CAS  Google Scholar 

  • Kim C-W, Koopman B, Bitton G (1994) INT-dehydrogenase activity test for assessing chlorine and hydrogen peroxide inhibition of filamentous pure cultures and activated sludge. Water Res 28:1117–1121.

    Article  CAS  Google Scholar 

  • King JMH, DiGrazia PM, Applegate B, Burlage R, Sanseverino J, Dunbar P, Larimer F, Sayler GS (1990) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249:778–781.

    Article  PubMed  CAS  Google Scholar 

  • Klamer HJC, Villerius LA, Roelsma J, DeMaagd PG-J, Opperhuizen A (1997) Genotoxicity testing using the MutatoxTM assay: evaluation of benzo[a]pyrene as a positive control. Environ Toxicol Chem 16:857–861.

    CAS  Google Scholar 

  • Knezovich JP, Harrison FL, Wilhelm RG (1987) The bioavailability of sedient-stored organic chemicals: a review. Water Air Soil Pollut 32:233–245.

    Article  CAS  Google Scholar 

  • Kong I-C, Bitton G, Koopman B, Jung K-H (1995) Heavy metal toxicity testing in environmental samples. Rev Environ Contam Toxicol 142:119–147.

    Article  PubMed  CAS  Google Scholar 

  • Kwan KK, Dutka BJ (1992) Evaluation of Toxi-Chromotest direct sediment toxicity testing procedure and Microtox solid-phase testing procedure. Bull Environ Contam Toxicol 49:656–662.

    Article  PubMed  CAS  Google Scholar 

  • Kwan KK, Dutka BJ (1995) Comparative assessment of two solid-phase toxicity bioassays: the Direct Sediment Toxicity Testing Procedure (DSTTP) and the Microtox® Solid-Phase Test (SPT). Bull Environ Contam Toxicol 55:338–346.

    Article  PubMed  CAS  Google Scholar 

  • Lampinen J, Korpela M, Saviranta P, Kroneld R, Karp M (1990) Use of Escherichia coli cloned with genes encoding bacterial luciferase for evaluation of chemical toxicity. Toxic Assess 5:337–350.

    Article  CAS  Google Scholar 

  • Lampinen J, Koivisto L, Wahlsten M, Mäntsälä P, Karp M (1992) Expression of lucifer-ase genes from different origins in Bacillus subtilis. Mol Gen Genet 232:498–504.

    Article  PubMed  CAS  Google Scholar 

  • Lampinen J, Virta M, Karp M (1995) Comparison of gram-positive and gram-negative bacterial strains cloned with different types of luciferase genes in bioluminescence cytotoxicity tests. Environ Toxicol Water Qual 10:41–48.

    Article  CAS  Google Scholar 

  • Lanoh BD, Giovannoni Si (1997) Identification of bacterial cells by chromosomal painting. Appl Environ Microbiol 63:1118–1123.

    Google Scholar 

  • Lanza GR, Dougherty JM (1991) Microbial enzyme activity and biomass relationship in soil ecotoxicology. Environ Toxicol Water Qual 6:165–176.

    Article  CAS  Google Scholar 

  • Lechevalier M (1977) Lipids in bacterial taxonomy—a taxonomist’s view. CRC Crit Rev Microbiol 5:109–209.

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Ewing CN, Levy EM (1988) The role of bacterial bioassays in predicting the potential impact of dumping contaminated sediments in the ocean. In: Proceedings, 7th International Ocean Disposal Symposium, Wolfville, Nova Scotia, Canada, 1987, pp 540–561.

    Google Scholar 

  • Lee K-H, Ruby EG (1992) Detection of the light organ symbiont, Vibrio fisheri, in Hawaiian seawater by using lux gene probes. Appl Environ Microbiol 58:942–947.

    PubMed  CAS  Google Scholar 

  • Lenz P, Siissmuth R (1987) A highly sensitive bacterial assay for toxins based on swarming inhibition, and comparison with the cup plate assay based on growth inhibition. Toxicology 45:185–191.

    Article  PubMed  CAS  Google Scholar 

  • Liss W, Ahlf W (1997) Evidence from whole-sediment, porewater, and elutriate testing in toxicity assessment of contaminated sediments. Ecotoxicol Environ Saf 36:140–147.

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Thomson K (1983) Toxicity assessment of chlorobenzenes using bacteria. Bull Environ Contam Toxicol 31:105–111.

    Article  PubMed  CAS  Google Scholar 

  • Livens FR (1991) Chemical reactions of metals with humic material. Environ Pollut 70: 183–208.

    Article  PubMed  CAS  Google Scholar 

  • Lock MA, Ford TE (1983) Inexpensive flow microcalorimeter for measuring heat production of attached and sedimentary aquatic microorganisms. Appl Environ Microbiol 46:463–467.

    PubMed  CAS  Google Scholar 

  • Loveley DR, Phillips EJP, Lonergan DJ (1989) Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55:700–706.

    Google Scholar 

  • Madsen EL (1991) Determining in situ biodegradation: facts and challenges. Environ Sci Technol 25:1663–1673.

    Article  Google Scholar 

  • Madsen EL, Sinclair JL, Ghiorse WC (1991) in situ biodegradation: microbiological patterns in a contaminated aquifer. Science 252:830–833.

    Article  PubMed  CAS  Google Scholar 

  • Marty D (1995) Méthanogenèse et techniques anaérobies. Océanis 21:227–245.

    CAS  Google Scholar 

  • Marxsen J, Fiebig DM (1993) Use of perfused cores for evaluating extracellular enzyme activity in stream-bed sediments. FEMS Microbiol Ecol 13:1–12.

    Article  CAS  Google Scholar 

  • Masson L, Comeau Y, Brousseau R, Samson R, Greer C (1993) Construction and application of chromosomally integrated lac-lux gene markers to monitor the fate of a 2,4-dichlorophenoxyacetic acid-degrading bacterium in contaminated soils. Microbial Release 1:209–216.

    CAS  Google Scholar 

  • Maurines-Carboneill C, Pernelle J-J, Morin L, Sachon G, Leblon G (1998) Relevance of the INT test response as an indicator of ETS activity in monitoring heterotrophic aerobic bacterial populations in activated sludges. Water Res 32:1213–1221.

    Article  CAS  Google Scholar 

  • Maxon CL, Barnett AM, Diener DR (1997) Sediment contaminants and biological effects in southern California: use of a multivariate statistical approach to assess biological impact. Environ Toxicol Chem 16:775–784.

    Article  CAS  Google Scholar 

  • Mayfield CI, Inniss WE, Sain P (1980) Continuous culture of mixed sediment bacteria in the presence of mercury. Water Air Soil Pollut 13:335–349.

    Article  CAS  Google Scholar 

  • Mazierski J (1995) Effect of chromium (CrVI) on the growth rate of activated sludge bacteria. Water Res 29:1479–1482.

    Article  CAS  Google Scholar 

  • McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM (1997) Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem 16:892–899.

    CAS  Google Scholar 

  • McFeters GA, Bond PJ, Olson SB, Tchan YT (1983) A comparison of microbial bioassays for the detection of aquatic toxicants. Water Res 17:1757–1762.

    Article  CAS  Google Scholar 

  • McGillivray AR, Shiaris MP (1994) Microbial ecology of polycyclic aromatic hydrocarbon (PAH) degradation in coastal sediments. In: Chaudhry GR (ed) Biological Degradation and Bioremediation of Toxic Chemicals. Chapman & Hall, London, pp 125–147.

    Google Scholar 

  • Metcalfe CD, Balch GC, Cairns VW, Fitzsimons JD, Dunn BP (1990) Carcinogenic and genotoxic activity of extracts from contaminated sediments in Western Lake Ontario. Sci Total Environ 94:125–141.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Reil L-A (1983) Benthic response to sedimentation events during autumn to spring at a shallow water station in the Western Kiel Bight. Mar Biol 77:247–256.

    Article  CAS  Google Scholar 

  • Miller ME, Cooney JJ (1994) Effects of tri-, di-and monobutyltin on heterotrophic nitrifying bacteria from surficial estuarine sediments. Arch Environ Contam Toxicol 27: 501–506.

    CAS  Google Scholar 

  • Mills AL, Colwell RR (1977) Microbiological effects of metal ions in Chesapeake Bay water and sediment. Bull Environ Contam Toxicol 18:99–103.

    Article  PubMed  CAS  Google Scholar 

  • Milner CR, Goulder R (1986) The abundance, heterotrophic activity and taxonomy of bacteria in a stream subject to pollution by chlorophenols, nitrophenols and phenoxyalkanoic acids. Water Res 20:85–90.

    Article  Google Scholar 

  • Miyamoto S, Seki H (1992) Environmental factors controlling the population growth rate of the bacterial community in Matsumi-Ike Bog. Water Air Soil Pollut 63:379–396.

    Article  CAS  Google Scholar 

  • Moll RA, Mansfield PJ (1991) Response of bacteria and phytoplankton to contaminated sediments from Trenton Channel, Detroit River. Hydrobiologia 219:281–299.

    Article  Google Scholar 

  • Monfort P, Ratinaud M-H, Got P, Baleux B (1995) Apports de la cytométrie en flux et en image en écologie bactérienne des milieux aquatiques. Océanis 21:97–111.

    CAS  Google Scholar 

  • Montuelle B, Latour X, Volat B, Gounot A-M (1994) Toxicity of heavy metals to bacteria in sediments. Bull Environ Contam Toxicol 53:753–758.

    Article  PubMed  CAS  Google Scholar 

  • Montuelle B, Latour X, Volat B, Lafont M (1997) Use of a 6-steps microcosm for studying a wastewater discharge in a freshwater ecosystem: a pluridisciplinary study. Water Air Soil Pollut 99:661–669.

    CAS  Google Scholar 

  • Montuelle B, Volat B (1998) Impact of wastewater treatment plant discharge on enzyme activity in freshwater sediments. Ecotoxicol Environ Saf 40:154–159.

    Article  PubMed  CAS  Google Scholar 

  • Moore DW, Dillon TD, Gamble EW (1995) Long-term storage of sediments: implications for sediment toxicity testing. Environ Pollut 89:147–154

    Article  PubMed  CAS  Google Scholar 

  • Moore DW, Bridges TS, Gray BR, Duke BM (1997) Risk of ammonia toxicity during sediment bioassays with the estuarine amphipod Leptocheirus plumulosus. Environ Toxicol Chem 16:1020–1027.

    CAS  Google Scholar 

  • Moore DRJ, Caux P-Y (1997) Estimating low toxic effects. Environ Toxicol Chem 16: 794–801.

    Article  CAS  Google Scholar 

  • Moran MA, Hodson RE (1990) Bacterial production on humic and nonhumic components of dissolved organic carbon. Limnol Oceanogr 35:1744–1756.

    Article  CAS  Google Scholar 

  • Morel JL, Hosy C, Bitton G (1995) Assessment of bioavailability of metals to plants with MetPLATE, a microbiological test. In: Proceedings, Contaminated Soil ‘85, Maastricht, The Netherlands, pp 527–528.

    Google Scholar 

  • Münster U, Einö P, Nurminen J (1989) Evaluations of the measurements of extracellular enzyme activities in a polyhumic lake by means of studies with 4-methylumbelliferyl substrates. Arch Hydrobiol 115:321–337.

    Google Scholar 

  • Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700.

    PubMed  CAS  Google Scholar 

  • Nakama A, Yoshikura T, Fukunaga I (1997) Induction of cytochrome P450 in Hep G2 cells and mutagenicity of extracts of sediments from a waste disposal site near Osaka, Japan. Bull Environ Contam Toxicol 59:344–351.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Fujisaki T, Tamashiro H (1986) Characteristics of Hg-resistant bacteria isolated from Minamata Bay sediment. Environ Res 40:58–67.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Sakamoto M, Uchiyama H, Yagi 0 (1990) Organomercurial-volatilizing bacteria in the mercury-polluted sediment of Minamata Bay, Japan. Appl Environ Microbiol 56:304–305.

    PubMed  CAS  Google Scholar 

  • Nelson MK, Landrum PF, Burton GAI, Klaine SJ, Crecelius EA, Byl TD, Gossiaux DC, Tsymbal VN, Cleveland L, Ingersoll CG, Sasson-Brickson G (1993) Toxicity of contaminated sediments in dilution series with control sediments. Chemosphere 27: 1789–1812.

    Article  CAS  Google Scholar 

  • Nendza M, Seydel JK (1990) Application of bacterial growth kinetics to in vitro toxicity assessment of substituted phenols and anilines. Ecotoxicol Environ Saf 19:228–241.

    Article  PubMed  CAS  Google Scholar 

  • Neumann-Hensel H, Ahlf W (1995) Fate of copper and cadmium in a sediment-water system, and effect on chitin-degrading bacteria. Acta Hydrochim Hydrobiol 23:72–75.

    Article  CAS  Google Scholar 

  • Newton LC, McKenzie JD (1995) Echinoderms and oil pollution: a potential stress assay using bacterial symbionts. Mar Pollut Bull 31:453–456.

    Article  CAS  Google Scholar 

  • Nix PG, Daykin MM, Vilkas KL (1993) Sediment bags as an integrator of fecal contamination in aquatic systems. Water Res 27:1569–1576.

    Article  Google Scholar 

  • Nohava M, Vogel WR, Gaugitsch H (1995) Evaluation of the luminescent bacteria bioassay for the estimation of the toxicological potential of effluent water samples—comparison with data from chemical analyses. Environ Int 21:33–37.

    Article  CAS  Google Scholar 

  • Nugent CE, Atchison GJ, Nelson DW, McIntosh AW (1980) The effects of heavy metals on microbial biomass in sediments of Palestine Lake. Hydrobiologia 70:6973.

    Article  Google Scholar 

  • Nyholm N, Källqvist T (1989) Methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol Chem 8:689–703.

    Article  CAS  Google Scholar 

  • Ödberg-Ferragut C, Espigares M, Dive D (1991) Stress protein synthesis, a potential toxicity marker in Escherichia coll. Ecotoxicol Environ Saf 21:275–282.

    Article  PubMed  Google Scholar 

  • Olson BH, Cooper RC (1976) Comparison of aerobic and anaerobic methylation of mercuric chloride by San Francisco Bay sediments. Water Res 10:113–116.

    Article  CAS  Google Scholar 

  • Olson BH, Barkay T, Colwell RR (1979) Role of plasmids in mercury transformation by bacteria isolated from the aquatic environment. Appl Environ Microbiol 38:478–485.

    PubMed  CAS  Google Scholar 

  • Olson BH (1991) Tracking and using genes in the environment. Environ Sci Technol 25: 604–611.

    Article  CAS  Google Scholar 

  • Olson BH, Ford S, Lester J (1991a) The occurrence of merR and merC gene sequences among mercury-resistant determinants in river sediments containing elevated levels of mercury. In: Proceedings, Oceans ‘87 Conference, Halifax, Nova Scotia, Canada, pp 1717–1721.

    Google Scholar 

  • Olson BH, Cayless SM, Ford S, Lester JN (1991b) Toxic element contamination and the occurence of mercury-resistant bacteria in Hg-contaminated soil, sediments and sludges. Arch Environ Contam Toxicol 20:226–233.

    Article  CAS  Google Scholar 

  • Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343.

    PubMed  CAS  Google Scholar 

  • Oremland RS, Steinberg NA, Maest AS, Miller LG, Hollibaugh JT (1990) Measurement of in situ rates of selenate removal by dissimilatory bacterial reduction in sediments. Environ Sci Technol 24:1157–1164.

    Article  CAS  Google Scholar 

  • Oremland RS, Steinberg NA, Presser TS, Miller LG (1991) in situ bacterial selenate reduction in the agricultural drainage systems of Western Nevada. Appl Environ Microbiol 57:615–617.

    PubMed  CAS  Google Scholar 

  • Othoudt RA, Giesy JP, Grzyb KR, Verbrugge DA, Hoke RA, Drake JB, Anderson D (1991) Evaluation of the effects of storage time on the toxicity of sediments. Chemosphere 9(10):801–807.

    Article  Google Scholar 

  • Oudot J, Fusey P, van Praet M, Feral JP, Gaill F (1981) Hydrocarbon weathering in seashore invertebrates and sediments over a two-year period following the Amoco Cadiz oil spill: influence of microbial metabolism. Environ Pollut Series A 26:93–110.

    Article  CAS  Google Scholar 

  • Pace NR (1997) A molecular view of microbial diversity and the biosphere. Science 276: 734–740.

    Article  PubMed  CAS  Google Scholar 

  • Pamatmat MM (1982) Heat production in sediment: ecological significance. Science 215: 395–397.

    Article  PubMed  CAS  Google Scholar 

  • Parekh NR, Everaerts K, Lagacherie B, Soulas G (1996) Microbial diversity and activity in subsoils: functional and phylogenetic diversity of heterotrophic bacterial communities within a soil profile. In: Proceedings, Pesticides, Soil Microbiology and Soil Quality-2nd International Symposium on Environmental Aspects of Pesticide Microbiology, SETAC, Beaune, France, 7–11 July 1996, pp 64–67.

    Google Scholar 

  • Paton GI, Palmer G, Kindness A, Campbell C, Glover LA, Killham K (1995) Use of luminescence-marked bacteria to assess copper bioavailability in malt whisky distillery effluent. Chemosphere 31:3217–3224.

    Article  CAS  Google Scholar 

  • Patrick FM, Loutit M (1976) Passage of metals in effluents, through bacteria to higher organisms. Water Res 10:333–335.

    Article  CAS  Google Scholar 

  • Pedersen D, Sayler GS (1981) Methanogenesis in freshwater sediments: inherent variability and effects of environmental contaminants. Can J Microbiol 27:198–205.

    Article  PubMed  CAS  Google Scholar 

  • Peijnenburg WJGM, Posthuma L, Eijsackers HP, Allen HE (1997) A conceptual framework for implementation of bioavailability of metals for environmental management purposes. Ecotoxicol Environ Saf 37:163–172.

    Article  CAS  Google Scholar 

  • Pipke R, Wagner-Döbler I, Timmis KN, Dwyer DF (1992) Survival and function of a genetically engineered pseudomonad in aquatic sediment microcosms. Appl Environ Microbiol 58:1259–1265.

    PubMed  CAS  Google Scholar 

  • Polz MF, Cavanaugh CM (1997) A simple method for quantification of uncultured microorganisms in the environment based on in vitro transcription of 16S rRNA. Appl Environ Microbiol 63:1028–1033.

    PubMed  CAS  Google Scholar 

  • Pontasch KW, Niederlehner BR, Cairns JJ (1989) Comparisons of single-species, microcosm and field responses to a complex effluent. Environ Toxicol Chem 8:521–532.

    Article  CAS  Google Scholar 

  • Porcella DB, Adams VD, Medine AJ, Cowan PA (1982) Using three-phase aquatic microcosms to assess fates and impacts of chemicals in microbial communities. Water Res 16:489–496.

    Article  CAS  Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948.

    Article  Google Scholar 

  • Poulicek M, Danckers V (1995) L’ATP et la charge énergétique adénylique (ECA) en écologie microbienne des milieux aquatiques. Océanis 21:191–223.

    CAS  Google Scholar 

  • Pratt JR, Bowers NJ, Niederlehner BR, Cairns JJ (1988) Effects of chlorine on microbial communities in naturally derived microcosms. Environ Toxicol Chem 7:679–687.

    CAS  Google Scholar 

  • Pritchard PH, Bourquin AW, Frederickson HL, Maziarz T (1979) System design factors affecting environmental fate studies in microcosms. In: Bourquin AW, Pritchard PH (eds) Proceedings, Workshop on Microbial Degradation of Pollutants in Marine Environments. U.S. Environmental Protection Agency, Washington, DC, pp 251–272.

    Google Scholar 

  • Radha S, Seenayya G (1992) Environmental factors affecting the bioavailability and toxicity of Cd and Zn to an anaerobic bacterium Desulfovibrio. Sci Total Environ 125:123–136.

    Article  CAS  Google Scholar 

  • Ramaiah N, Chandramohan D (1993) Ecological and laboratory studies on the role of luminous bacteria and their luminescence in coastal pollution surveillance. Mar Pollut Bull 26:190–201.

    Article  CAS  Google Scholar 

  • Ramamoorthy S, Springthorpe S, Kushner DJ (1977) Competition for mercury between river sediment and bacteria. Bull Environ Contam Toxicol 17:505–511.

    Article  PubMed  CAS  Google Scholar 

  • Rao SS, Jurkovic AA, Nriagu JO (1984) Bacterial activity in sediments of lakes receiving acid precipitation. Environ Pollut Series A 36:195–205.

    Article  Google Scholar 

  • Rashid M, Mayaudon J (1974) Effect of carbamates and anilines on Pseudomonas putida and soil microbial activity. Ann Inst Pasteur Microbiol 125A:193–200.

    CAS  Google Scholar 

  • Reed JP, Krueger HR, Hall FR (1989) Fluorescin diacetate hydrolysis for determination of accelerated degradation of thiocarbamate herbicides. Bull Environ Contam Toxicol 43:929–934.

    Article  PubMed  CAS  Google Scholar 

  • Remberger M, Allard AS, Neilson AH (1986) Biotransformations of chloroguaiacols, chlorocatechols, and chloroveratroles in sediments. Appl Environ Microbiol 51:552–558.

    PubMed  CAS  Google Scholar 

  • Reynoldson TB (1987) Interactions between sediment contaminants and benthic organisms. Hydrobiologia 149:53–66.

    CAS  Google Scholar 

  • Richardson ML (1993) Regulatory status of Microtox. In: Richardson ML (ed) Ecotoxicology Monitoring. VCH Weinheim, Germany, pp 271–286.

    Google Scholar 

  • Ringwood AH, DeLorenzo ME, Ross PE, Holland AF (1997) Interpretation of Microtox® solid-phase toxicity tests: the effects of sediment composition. Environ Toxicol Chem 16:1135–1140.

    Article  CAS  Google Scholar 

  • Robinson KG, Farmer WS, Novak JT (1990) Availability of sorbed toluene in soils for biodegradation by acclimated bacteria. Water Res 24:345–350.

    Article  CAS  Google Scholar 

  • Rodriguez GG, Phipps D, Ishiguro K, Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl Environ Microbiol 58:1801–1808.

    PubMed  CAS  Google Scholar 

  • Rönnpagel K, Gunkel J, Ahlf W (1995) Sensitivity and indicator function of bioassays. In: Proceedings, Contaminated Soil ‘85, Maastricht, The Netherlands, pp 56–59.

    Google Scholar 

  • Ron EZ, Minz D, Finkelstein NP, Rosenberg E (1992) Interactions of bacteria with cadmium. Biodegradation 3:161–170.

    Article  CAS  Google Scholar 

  • Ryan JA, Hightower LE (1994) Evaluation of heavy-metal ion toxicity in fish cells using a combined stress protein and cytotoxicity assay. Environ Toxicol Chem 13:1231–1240.

    Article  CAS  Google Scholar 

  • Sakata M (1985) Diagenetic remobilization of manganese, iron, copper and lead in anoxic sediment of a freshwater pond. Water Res 19:1033–1038.

    Article  CAS  Google Scholar 

  • Samanta S, Kole RK, Ganguly LK, Chowdhury A (1997) Photochemical transformation of the fungicide chlorothalonil by ultraviolet radiation. Bull Environ Contam Toxicol 59:367–374.

    Article  PubMed  CAS  Google Scholar 

  • Samoiloff MR, Bell J, Birkholz DA, Webster GRB, Arnott EG, Pulak R, Madrid A (1983) Combined bioassay-chemical fractionation scheme for the determination and ranking of toxic chemicals in sediments. Environ Sci Technol 17:329–334.

    Article  CAS  Google Scholar 

  • Sanders BM, Martin LS, Nakagawa PA, Hunter DA, Miller S, Ullrich SJ (1994) Specific cross-reactivity of antibodies raised against two major stress proteins, stress 70 and chaperonin 60, in diverse species. Environ Toxicol Chem 13:1241–1249.

    Article  CAS  Google Scholar 

  • Santiago S, Thomas RL, Larbaigt G, Rossel D, Echeverria MA, Tarradellas J, Loizeau JL, McCarthy L, Mayfield CI, Corvi C (1993) Comparative ecotoxicity of suspended sediment in the lower Rhone River using algal fractionation, Microtox® and Daphnia magna bioassays. Hydrobiologia 252:231–244.

    Article  CAS  Google Scholar 

  • Sauer TC, Costa HJ, Brown JS, Ward TJ (1997) Toxicity identification evaluations of produced-water effluents. Environ Toxicol Chem 16:2020–2028.

    Article  CAS  Google Scholar 

  • Schiewe MH, Hawk EG, Actor DI, Krahn MM (1985) Use of a bacterial luminescence assay to assess toxicity of contaminated marine sediments. Can J Fish Aquat Sci 42: 1244–1248.

    Article  CAS  Google Scholar 

  • Schniirer J, Rosswall T (1982) Fluorescin diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261.

    Google Scholar 

  • Scholl MA, Harvey RW (1992) Laboratory investigations on the role of sediment surface and groundwater chemistry in transport of bacteria through a contaminated sandy aquifer. Environ Sci Technol 26:1410–1417.

    Article  CAS  Google Scholar 

  • Scholz O, Marxsen J (1996) Sediment phosphatases of the Breitenbach, a first-order Central European stream. Arch Hydrobiol 135:433–450.

    CAS  Google Scholar 

  • Schultze-Lam S, Thompson JB, Beveridge TJ (1993) Metal ion immobilization by bacterial surfaces in freshwater environments. Water Pollut Res J Can 28:51–81.

    CAS  Google Scholar 

  • Seiki T, Izawa H, Date E, Sunahara H (1994) Sediment oxygen demand in Hiroshima Bay. Water Res 28:385–393.

    Article  CAS  Google Scholar 

  • Selifonova O, Burlage R, Barkay T (1993) Bioluminescent sensors for detection of bio-available Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090.

    PubMed  CAS  Google Scholar 

  • Servais P (1995) Estimation de la biomasse et de l’activité des bactéries en milieux aquatiques. Océanis 21:141–160.

    CAS  Google Scholar 

  • Servais P, Lavandier P (1995) Mesures de production bactérienne par incorporation de thymidine et de leucine marquées: discussion des protocoles expérimentaux et exemples d’application. Océanis 21:161–189.

    CAS  Google Scholar 

  • SETAC-Europe (1991) Guidance document on testing procedures for pesticides in freshwater mesocosms. In: Proceedings, Workshop “A meeting of experts on guidelines for static field mesocosm tests”, Huntingdon, UK, 3–4 July 1991.

    Google Scholar 

  • Shan Y, McKelvie ID, Hart BT (1994) Determination of alkaline phosphatase-hydrolyzable phosphorus in natural water systems by enzymatic flow injection. Limnol Oceanogr 39:1993–2000.

    Article  CAS  Google Scholar 

  • Sharma PK, McInerney MJ (1994) Effect of grain size on bacterial penetration, reproduction, and metabolic activity in porous glass bead chambers. Appl Environ Microbiol 60:1481–1486.

    PubMed  CAS  Google Scholar 

  • Shaw JL, Kennedy JH (1996) The use of aquatic field mesocosm studies in risk assessment. Environ Toxicol Chem 15:605–607.

    CAS  Google Scholar 

  • Shiaris MP, Rex AC, Pettibone GW, Keay K, McManus P, Rex MA, Ebersole J, Gallagher E (1987) Distribution of indicator bacteria and Vibrio parahaemolyticus in sewage-polluted intertidal sediments. Appl Environ Microbiol 53:1756–1761.

    PubMed  CAS  Google Scholar 

  • Shiaris MP (1989) Seasonal biotransformation of naphthalene, phenanthrene, and benzo[- a]pyrene in surficial estuarine sediments. Appl Environ Microbiol 55:1391–1399.

    PubMed  CAS  Google Scholar 

  • Shieh WK, Yee CJ (1985) Microbial toxicity monitor for in situ continuous applications. Biotechnol Bioeng 27:1500–1506.

    Article  PubMed  CAS  Google Scholar 

  • Sinks GD, Schultz TW, Hunter RS (1997) UVb-induced toxicity of PAHs: effects of substituents and heteroatom substitution. Bull Environ Contam Toxicol 59:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Siron R, Pelletier E, Delille D, Brochu C (1993) Résponse de la flore bactérienne de l’estuaire du Saint-Laurent a un éventuel déversement de pétrole. Water Pollut Res J Can 28:385–414.

    CAS  Google Scholar 

  • Somville M, Billen G (1983) A method for determining exoproteolytic activity in natural waters. Limnol Oceanogr 28:190–193.

    Article  CAS  Google Scholar 

  • Soulas G (1996) New trends in side-effect testing. In: Proceedings, Pesticides, Soil Microbiology and Soil Quality-2nd International Symposium on Environmental Aspects of Pesticide Microbiology, Beaune, France, 7–11 July 1996, pp 12–21.

    Google Scholar 

  • Spencer M, Warren PH (1996) The effects of habitat size and productivity on food web structure in small aquatic microcosms. Oikos 75:419–430.

    Article  Google Scholar 

  • Stahl DA, Kane MD (1992) Methods of microbial identification, tracking and monitoring of function. Curr Opin Biotechnol 3:244–252.

    Article  CAS  Google Scholar 

  • Stanisich VA, Bennett PM, Richmond MH (1977) Characterization of a translocation unit encoding resistance to mercuric ions that occurs on a nonconjugative plasmid in Pseudomonas aeruginosa. J Bacteriol 129:1227–1233.

    PubMed  CAS  Google Scholar 

  • Steffan RJ, Atlas RM (1988) DNA amplification to enhance detection of genetically engineered bacteria in environmental samples. Appl Environ Microbiol 54:2185–2191.

    PubMed  CAS  Google Scholar 

  • Steinberg SM, Poziomek EJ, Engelmann WH, Rogers KR (1995) A review of environ-mental applications of bioluminescence measurements. Chemosphere 30:2155–2197.

    Article  CAS  Google Scholar 

  • Stemmer BL, Burton GAJ, Leibfritz-Frederick S (1990) Effect of sediment test variables on selenium toxicity to Daphnia magna. Environ Toxicol Chem 9:381–389.

    CAS  Google Scholar 

  • Stephenson RR, Kane DF (1984) Persistence and effects of chemicals in small enclosures in ponds. Arch Environ Contam Toxicol 13:313–326.

    Article  CAS  Google Scholar 

  • Stewart WDP, Fitzgerald GP, Bums RH (1967) in situ studies on N2 fixation using the acethylene reduction technique. Proc Natl Acad Sci USA 58:2071–2078.

    Article  PubMed  CAS  Google Scholar 

  • Stringham EG, Candido EPM (1994) Transgenic hsp16-lacZ strains of the soil nematode Caenorhabditis elegans as biological monitors of environmental stress. Environ Toxicol Chem 13:1211–1220.

    CAS  Google Scholar 

  • Strotmann U, Eglstler H, Pagga U (1994) Development and evaluation of a growth inhibition test with sewage bacteria for assessing bacterial toxicity of chemical compounds. Chemosphere 28:755–766.

    Article  CAS  Google Scholar 

  • Strotmann U, Pagga U (1996) A growth inhibition test with sewage bacteria—results of an international ring test 1995. Chemosphere 32:921–933.

    Article  PubMed  CAS  Google Scholar 

  • Susarla S, Masunaga S, Yonezawa Y (1997) Kinetics of sequential dechlorination of chloroorganics in an anaerobic sediment. Bull Environ Contam Toxicol 58:227–233.

    Article  PubMed  CAS  Google Scholar 

  • Svensson JM (1997) Influence of Chironomus plumosus larvae on ammonium flux and denitrification (measured by the acetylene-blockage and the isotope-pairing technique) in eutrophic lake sediment. Hydrobiologia 346:157–168.

    Article  CAS  Google Scholar 

  • Sweet LI, Travers DF, Meier PG (1997) Chronic toxicity evaluation of wastewater treatment plant effluents with bioluminescent bacteria: a comparison with invertebrates and fish. Environ Toxicol Chem 16:2187–2189.

    CAS  Google Scholar 

  • Tabata M, Kobayashi Y, Nakajima A, Suzuki S (1990) Evaluation of pollutant toxicity in aquatic environment by assay of enzymes released from lysosomes. Bull Environ Contam Toxicol 45:31–38.

    Article  PubMed  CAS  Google Scholar 

  • Tescione L, Belfort G (1993) Construction and evaluation of a metal ion detector. Biotechnol Bioeng 42:945–952.

    Article  PubMed  CAS  Google Scholar 

  • Thomulka KW, McGee DJ, Lang JH (1993) Use of the bioluminescent bacterium Photo-bacterium phosphoreum to detect potentially biohazardous materials in water. Bull Environ Contam Toxicol 51:538–544.

    Article  PubMed  CAS  Google Scholar 

  • Timoney J, Port J, Giles J, Spanier J (1978) Heavy-metal and antibiotics resistance in the bacterial flora of sediments of New York Bight. Appl Environ Microbiol 36: 465–472.

    PubMed  CAS  Google Scholar 

  • Torsvik V, Goksoyr J, Lise Daae F (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787.

    PubMed  CAS  Google Scholar 

  • Tracey GA, Hansen DJ (1996) Use of biota-sediment accumulation factors to assess similarity of nonionic organic chemical exposure to benthically-coupled organisms of differing trophic mode. Arch Environ Contam Toxicol 30:467–475.

    Article  PubMed  CAS  Google Scholar 

  • Tratnyek PG, Elovitz MS, Colverson P (1994) Photoeffects of textile dye wastewaters: sensitization of singlet oxygen formation, oxidation of phenols and toxicity to bacteria. Environ Toxicol Chem 13:27–33.

    Article  CAS  Google Scholar 

  • Trevors JT, Mayfield CI, Inniss WE (1981) A rapid toxicity test using Pseudomonas fluorescens. Bull Environ Contam Toxicol 26:433–439.

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT (1982) Effect of pentachlorophenol on electron transport system activity in soil. Bull Environ Contam Toxicol 29:727–730.

    Article  PubMed  CAS  Google Scholar 

  • Trevors JT (1985) Effect of methylene chloride on respiration and electron transport system (ETS) activity in freshwater sediment. Bull Environ Contam Toxicol 34:239–245.

    Article  PubMed  CAS  Google Scholar 

  • True CJ, Heyward AA (1990) Relationships between Microtox test results, extraction methods, and physical and chemical compositions of marine sediment samples. Toxic Assess 5:29–45.

    Article  CAS  Google Scholar 

  • Tsai Y-L, Olson BH (1992) Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol 58:754–757.

    PubMed  CAS  Google Scholar 

  • Tubbing DMJ, Admiraal W, Cleven RFMJ, Iqbal M, van de Meent D, Verweij W (1994) The contribution of complexed copper to the metabolic inhibition of algae and bacteria in synthetic media and river water. Water Res 28:37–44.

    Article  CAS  Google Scholar 

  • USEPA (U.S. Environmental Protection Agency) (1985) Guidlines for preparing environmental and waste samples for mutagenicity (Ames) testing. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • USEPA (1988) Methods for aquatic toxicity identification evaluation. Phase I toxicity characterization procedures. Report 600/3–88/034. U.S. Environmental Protection Agency, Duluth, MN.

    Google Scholar 

  • USEPA (1989a) Methods for aquatic toxicity identification evaluation. Phase II toxicity identification procedures. Report 600/3–88/035. U.S. Environmental Protection Agency, Duluth, MN.

    Google Scholar 

  • USEPA (1989b) Methods for aquatic toxicity identification evaluation. Phase III toxicity identification procedures. Report 600/3–88/036. U.S. Environmental Protection Agency, Duluth, MN.

    Google Scholar 

  • USEPA/U.S. Army Corps of Engineers (1991) Evaluation of dredged material proposed for ocean disposal (testing manual). Implementation Manual, no. 103, Public Law 92532: Marine Protection, Research, and Sanctuaries Act of 1972. U.S. Army Engineers Waterways Experiment Station, Vicksburg, MS.

    Google Scholar 

  • Vacelet E, Mille G, Le Campion-Alsumard T, Plante-Cuny M-R (1985) Evolution of bacterial populations in salt marsh sediments of Ile Grande polluted by Amoco Cadiz. Int Rev Hydrobiol 70:815–827.

    Article  Google Scholar 

  • van Beelen P, Doelman P (1997) Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminated soil and sediment. Chemosphere 34:455–499.

    Article  Google Scholar 

  • van der Oost R, Opperhuizen A, Satumalay K, Heida H, Vermeulen NPE (1996) Biomonitoring aquatic pollution with feral eel (Anguilla anguilla). I. Bioaccumulation: biota-sediment ratios of PCBs, OPCs, PCDDs and PCDFs. Aquat Toxicol 35:21–46.

    Article  Google Scholar 

  • van Dyk TK, Majarian WM, Konstantinov KB, Young RM, Dhurjati PS, LaRossa RA (1994) Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol 60:1414–1420.

    PubMed  Google Scholar 

  • van Es FB, van Arkel MA, Bouwman LA, Schröder HGJ (1980) Influence of organic pollution on bacterial, macrobenthic and meiobenthic populations in intertidal flats of the Dollard. Neth J Sea Res 14:288–304.

    Article  Google Scholar 

  • Verschuere L, Fievez V, van Vooren L, Verstraete W (1997) The contribution of individual populations to the BIOLOG pattern of model microbial communities. FEMS Microbiol Ecol 24:353–362.

    Article  CAS  Google Scholar 

  • Vink JPM, van der Zee SEATM (1997) Effect of oxygen status on pesticide transforma-tion and sorption in undisturbed soil and lake sediment. Environ Toxicol Chem 16: 608–616.

    Article  CAS  Google Scholar 

  • Vivian CMG (1986) Tracers of sewage sludge in the marine environment: a review. Sci Total Environ 53:5–40.

    Article  PubMed  CAS  Google Scholar 

  • Vonk JW, Takagi S, Salardi C, Punt P, Blom AJM (1996) New methods to detect and determine micro-organisms in soil with DNA probes for the investigation of side effects of pesticides. In: Proceedings, Pesticides, Soil Microbiology and Soil Quality-2nd International Symposium on Environmental Aspects of Pesticide Microbiology, SETAC, Beaune, France, 7–11 July 1996, pp 70–72.

    Google Scholar 

  • Vosjan JH (1982) Respiratory electron transport system activities in marine environments. Hydrobiol Bull 16:61–68.

    Article  CAS  Google Scholar 

  • Waara K-O, Bell RT, Pettersson K (1993) Assessing the impact of copper on DNA and protein synthesis of lake bacterioplankton assemblages. Arch Hydrobiol 128:175–186.

    CAS  Google Scholar 

  • Wagner-Döbler I, Pipke R, Timmis KN, Dwyer DF (1992) Evaluation of aquatic sediment microcosms and their use in assessing possible effects of introduced microorganisms on ecosystem parameters. Appl Environ Microbiol 58:1249–1258.

    PubMed  Google Scholar 

  • Walsh GE, Garnas RL (1983) Determination of bioactivity of chemical fractions of lipid wastes using freshwater and saltwater algae and crustaceans. Environ Sci Technol 17: 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Wang W, Reed P (1984) Nitrobacter Bioassay for Aquatic Toxicity. Marcel Dekker, New York.

    Google Scholar 

  • Wang X, Grady CP Jr (1994) Comparison of biosorption isotherms for di-n-butyl phthalate by live and dead bacteria. Water Res 28:1247–1251.

    Article  CAS  Google Scholar 

  • Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40:1369–1380.

    Article  CAS  Google Scholar 

  • Williams LG, Chapman PM, Ginn TC (1986) A comparative evaluation of marine sediment toxicity using bacterial luminescence, oyster embryo and amphipod sediment bioassays. Mar Environ Res 19:225–249.

    Article  CAS  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the procaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74:5088–5090.

    Article  PubMed  CAS  Google Scholar 

  • Wood KV, Lam YA, McElroy WD, Seliger HH (1989a) Bioluminescent click beetles revisited. J Biolumin Chemolumin 4:31–39.

    Article  CAS  Google Scholar 

  • Wood KV, Lam YA, Seliger HH, McElroy WD (1989b) Complementary DNA coding click beetle luciferases can elicit bioluminescence of different colors. Science 244: 700–702.

    Article  CAS  Google Scholar 

  • Wu Q, Bedard DL, Wiegel J (1996) Influence of incubation temperature on the microbial reductive dechlorination of 2,3,4,6-tetrachlorobiphenyl in two freshwater sediments. Appl Environ Microbiol 62:4174–4179.

    PubMed  CAS  Google Scholar 

  • Wünsche L, Brüggemann L, Babel W (1995) Determination of substrate utilization patterns of soil microbial communities: an approach to assess population changes after hydrocarbon pollution. FEMS Microbiol Ecol 17:295–306.

    Article  Google Scholar 

  • Xia X, Bollinger J, Ogram A (1995) Molecular genetic analysis of the response of three soil microbial communities to the application of 2,4-D. Mol Ecol 4:17–28.

    Article  PubMed  CAS  Google Scholar 

  • Yamane ASK, Hosomi M, Murakami A (1997) Microbial degradation of petroleum hydrocarbons in estuarine sediment of Tama River in Tokyo urban area. Water Sci Technol 35:69–76.

    Article  CAS  Google Scholar 

  • Yannai S, Berdicevski I (1995) Formation of organic cadmium by marine microorganisms. Ecotoxicol Environ Saf 32:209–214.

    Article  PubMed  CAS  Google Scholar 

  • Zelles L, Scheunert I, Korte F (1985) Side effects of some pesticides on non-target soil microorganisms. J Environ Sci Health B20:457–488.

    CAS  Google Scholar 

  • Zumwalt DC, Dwyer FJ, Greer IE, Ingersoll CG (1994) A water-renewal system that accurately delivers small volumes of water to exposure chambers. Environ Toxicol Chem 13:1311–1314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George W. Ware

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Eismann, F., Montuelle, B. (1999). Microbial Methods for Assessing Contaminant Effects in Sediments. In: Ware, G.W. (eds) Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 159. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1496-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1496-0_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7167-3

  • Online ISBN: 978-1-4612-1496-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics