Skip to main content

Simultaneous Depth Recovery and Image Restoration

  • Chapter
Depth From Defocus: A Real Aperture Imaging Approach

Abstract

Given an image degraded by a linear space-variant (LSV) blur, the problem of restoring the original image is an interesting and challenging task. Space-variant image restoration is a problem of considerable importance in image processing because in realworld situations, the degradations are often space-varying. In comparison to the amount of work done on linear space-invariant image restoration [KT91,ST90], the literature records only a few results on the restoration of images degraded by LSV blurs. In [RH72], Robbins and Huang proposed an inversion procedure for LSV image restoration based on the Mellin transform. Sawchuk [Saw74] converted the spatially varying problem to a spatially invariant one using a suitable coordinate transformation. The approach is applicable to only a special class of LSV degradations that can be transformed into a linear space invariant (LSI) degradation. Frieden [Fri72] developed a restoration formula based on the principle of maximum entropy. In [AJ78], Angel and Jain employ a conjugate gradient descent method for restoration of images degraded by spatially varying PSFs. Trussel et al. propose a method in which the image is partitioned into rectangular regions, and each region is restored using a space-invariant technique, such as the MAP filter TH78a, TH78b] or the modified Landweber filter [TF92]. In [RR81], Schafer et al. present an iterative method for LSV image restoration. In [AS93], Patti et al. apply the reduced order Kalman filter for space-variant image restoration. The approach, however, has been found to be computationally expensive even for a moderate blur size. Ozkan et al. [MS94] propose the use of projections onto convex sets for space-varying image restoration. The method uses a set of deconvolution constraints that allow the use of a different PSF at each pixel. In [SB95], Koch et al. propose a multiple model-based extended Kalman filter for restoration of spatially varying blurred images. Note that in all the above methods, the space-variant blur is assumed to be known.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chaudhuri, S., Rajagopalan, A.N. (1999). Simultaneous Depth Recovery and Image Restoration. In: Depth From Defocus: A Real Aperture Imaging Approach. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1490-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1490-8_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7164-2

  • Online ISBN: 978-1-4612-1490-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics