## Abstract

Since in this book we are concerned with the analysis of data originating from experiments, we will have to state first what we mean by an experiment and its result. Just as in the laboratory, we define an experiment to be a strictly followed procedure, as a consequence of which a quantity or a set of quantities is obtained that constitutes the result. These quantities are continuous (temperature, length, current) or discrete (number of particles, birthday of a person, one of three possible colors). No matter how accurately all conditions of the procedure are maintained, the results of repetitions of an experiment will in general differ. This is caused either by the intrinsic statistical nature of the phenomenon under investigation or by the finite accuracy of the measurement. The possible results will therefore always be spread over a finite region for each quantity. All of these regions for all quantities that make up the result of an experiment constitute the *sample space* of that experiment. Since it is difficult and often impossible to determine exactly the accessible regions for the quantities measured in a particular experiment, the sample space actually used may be larger and may contain the true sample space as a subspace. We shall use this somewhat looser concept of a sample space.

## Preview

Unable to display preview. Download preview PDF.