Skip to main content

Geometrical Formulation of Quantum Mechanics

  • Chapter
On Einstein’s Path

Abstract

States of a quantum mechanical system are represented by rays in a complex Hilbert space. The space of rays has, naturally, the structure of a Uhler manifold. This leads to a geometrical formulation of the postulates of quantum mechanics which, although equivalent to the standard algebraic formulation, has a very different appearance. In particular, states are now represented by points of a symplectic manifold (which happens to have in addition a compatible Riemannian metric), observables are represented by certain real-valued functions on this space, and the Schrödinger evolution is captured by the symplectic flow generated by a Hamiltonian function. There is thus a remarkable similarity with the standard symplectic formulation of classical mechanics. Features such as uncertainties and state vector reductions—which are specific to quantum mechanics can also be formulated geometrically but now refer to the Riemannian metric—a structure which is absent in classical mechanics. The geometrical formulation sheds considerable light on a number of issues such as the second quantization procedure, the role of coherent states in semiclassical considerations, and the WKB approximation. More importantly, it suggests generalizations of quantum mechanics. The simplest among these are equivalent to the dynamical generalizations that have appeared in the literature. The geometrical reformulation provides a unified framework to discuss these and to correct a misconception. Finally, it also suggests directions in which more radical generalizations may be found.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. C. Ghirardi, A. Rimini, and T. Weber, “Unified dynamics for microscopic and macroscopic systems,” Phys. Rev. D34, 470–491 (1986).

    MathSciNet  ADS  Google Scholar 

  2. P. Pearle, “Combining stochastic dynamical state reduction with spontaneous localization,” Phys. Rev. A39, 2277–2289 (1989).

    ADS  Google Scholar 

  3. G. C. Ghirardi, R. Grassi and A. Rimini, “Continuous spontaneous reduction involving gravity,” Phys. Rev. A42, 1057–1064 (1990).

    ADS  Google Scholar 

  4. J. S. Bell, “Introduction to the hidden-variable question,” in Proceedings of the international school of physics Enrico Fermi, course IL: Foundations of quantum mechanics, (Academic Press, New York, 1971).

    Google Scholar 

  5. I. Bialynicki-Birula and J. Mycielski, “Nonlinear wave mechanics,” Ann. Phys. New York 100, 62–93 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  6. P. Pearle, “Reduction of a state vector by a non-linear Schrödinger equation,” Phys. Rev. D13, 857–868 (1976).

    MathSciNet  ADS  Google Scholar 

  7. S. Weinberg, “Testing quantum mechanics,” Ann. Phys. New York 194, 336–386 (1989).

    Article  MathSciNet  ADS  Google Scholar 

  8. P. Pearle, “Towards a relativistic theory of state vector reduction,” in Sixty-two years of uncertainty, Ed A. I. Miller (Plenum Press, New York, 1990).

    Google Scholar 

  9. J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, Cambridge, 1987).

    MATH  Google Scholar 

  10. A. Ashtekar and J. Stachel, Conceptual problems of quantum gravity (Birkhäuser, Boston, 1991).

    MATH  Google Scholar 

  11. K. V. Kuchat, “Time and interpretations of quantum gravity,” in Proceedings of the 4th Canadian conference on general relativity and relativistic astrophysics, Eds. G. Kunstatter, D. Vincent, and J. Williams (World Scientific, Singapore, 1992).

    Google Scholar 

  12. C. J. Isham, “Canonical quantum gravity and the problem of time,” in Integrable systems, quantum groups and quantum field theory, Eds. L. A. Ibart and M. A. Rodrigues (Kluwer, Dordrecht, 1992).

    Google Scholar 

  13. R. Penrose, Emperor’s new mind: Concerning computers, minds and the laws of physics (Oxford University Press, Oxford 1989).

    Google Scholar 

  14. M. Gell-Mann and J. B. Hartle, “Classical equations for quantum systems,” Phys. Rev. D47, 3345–3382 (1993).

    MathSciNet  ADS  Google Scholar 

  15. C. J. Isham, “Quantum logic and the histories approaches to quantum theory,” J. Math. Phys. 35, 2157–2185 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Troy A. Schilling, Geometry of quantum mechanics, doctoral thesis (The Pennsylvania State University 1996).

    Google Scholar 

  17. T. W. B. Kibble, “Geometrization of Quantum Mechanics,” Commun. Math. Phys. 65, 189–201 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. A. M. Perelomov, Generalized coherent states and their applications (Springer-Verlag, New York, 1986).

    Book  MATH  Google Scholar 

  19. A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. R. Gilmore, Ann. Phys. New York 74, 391 (1972).

    Article  MathSciNet  Google Scholar 

  21. J. R. Klauder1 Math. Phys. 4, 1055 (1963),i Math. Phys. 4, 1058 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  22. R. Penrose and W. Rindler, Spinors and space-time, vol 1 (Cambridge University Press, Cambridge, 1985).

    Google Scholar 

  23. A. Ashtekar, G. T. Horowitz, and A. Magnon-Ashtekar, “A generalization of tensor calculus and its applications to physics,” Gen. Rel. Gray. 14, 411–428 (1982).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. A. Heslot, “Quantum mechanics as a classical theory,” Phys, Rev. D31, 1341–1348 (1985).

    MathSciNet  Google Scholar 

  25. J. Anandan and Y. Aharonov, “Geometry of quantum evolution,” Phys. Rev. Lett. 65, 1697–1700 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. G. W. Gibbons, “Typical states and density matrices,” Jour. Geom. Phys. 8, 147–162 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. L. P. Hughston, “Geometric aspects of quantum mechanics,” in Twistor Theory, Ed. S. A. Huggett, (Marcel Dekker, New York, 1995).

    Google Scholar 

  28. L. P. Hughston, “Geometry of stochastic state vector reduction,” Proc. R. Soc. Lond. A452, 953–979 (1996).

    MathSciNet  ADS  Google Scholar 

  29. R. Cirelli, A. Manià, and L. Pizzocchero, “Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part I,” J. Math. Phys. 31, 2891–2897 (1990).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. R. Cirelli, A. Manià, and L. Pizzocchero, “Quantum mechanics as an infinite-dimensional Hamiltonian system with uncertainty structure: Part II,” J. Math. Phys. 31, 2898–2903 (1990).

    Article  ADS  MATH  Google Scholar 

  31. P. R. Chernoff, J. E. Marsden, Properties of infinite-dimensional Hamiltonian systems (Springer-Verlag, Berlin, 1974).

    MATH  Google Scholar 

  32. R. ShankarPrinciples of quantum mechanics, Chapter 9 (Plenum Press, New York, 1980).

    Google Scholar 

  33. P. A. M. Dirac, Lectures in quantum mechanics (Yeshiva University Press, New York, 1964).

    Google Scholar 

  34. R. Geroch, “A method for generating solutions of Einstein’s equations,”J. Math. Phys. 12,918–924 (1971).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. R. M. Wald, General relativity (The University of Chicago Press, Chicago, 1984).

    MATH  Google Scholar 

  36. A. Ashtekar and A. Magnon-Ashtekar, “A technique for analyzing the structure of isometries,” J. Math. Phys. 19, 1567–1572 (1978).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. M. Reed and B. Simon, Methods of modern mathematical physics, v. I, Functional analysis (Academic Press, 1980).

    Google Scholar 

  38. K. Yano, Structures on manifolds (World Scientific, Singapore, 1984).

    MATH  Google Scholar 

  39. W.-M. Zhang, “Coherent states: Theory and some applications,” Rev. Mod. Phys. 62, 867–927 (1990).

    Article  ADS  Google Scholar 

  40. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1981).

    Google Scholar 

  41. C. Lanczos, The variational principles of mechanics (Dover Publications, New York, 1970).

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ashtekar, A., Schilling, T.A. (1999). Geometrical Formulation of Quantum Mechanics. In: Harvey, A. (eds) On Einstein’s Path. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1422-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1422-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7137-6

  • Online ISBN: 978-1-4612-1422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics