Advertisement

Working with Engelbert

  • István Ozsváth

Abstract

My cooperation with Engelbert is long-standing and wide-ranging. It goes back to almost four decades and encompasses much of our work. In this paper, I summarize some of the old results we obtained together, mention some that I found as a consequence of our cooperation, and describe the work we have undertaken recently.

Keywords

Line Element Relativistic Cosmology Vacuum Field Equation Embed Problem High Dimensional Euclidean Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kurt Gödel, Rotating Universes in General Relativity, Proc. Intern. Cong. Math. 1 (1950), 175–181.Google Scholar
  2. [2]
    Otto Heckmann and Engelbert L. Schucking, Relativistic Cosmology in Gravitation: an introduction to current research, Louis Witten ed., John Wiley and Sons, New York-London 1962.Google Scholar
  3. [3]
    István Ozsváth and Engelbert L. Schucking, Finite Rotating Universe, Nature 193 (1962), 1168–1169; Annals of Physics 55 (1969) 166–204Google Scholar
  4. [4]
    István Ozsváth and Engelbert L. Schucking, An Anti-Mach Metric, in Recent Developments in General Relativity, Infeld Festschrift Pergamon Press 1962.Google Scholar
  5. [5]
    István Ozsváth, All Homogeneous Solutions of Einstein’s Vacuum Field Equations with a non-vanishing Cosmological Term, in Gravitation and Geometry, Robinson Festschrift, Wolfgang Rindler, and And Andrzej Trautman eds., Bibliopolis, Naples 1987.Google Scholar
  6. [6]
    István Ozsváth, Ivor Robinson, and Krzysztof Rózga, Plane-fronted Gravitational and Electromagnetic Waves in Spaces with Cosmological Constant, J. Math. Phys. 26 (1985) 1755–1761.MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    István Ozsváth, Spatially Homogeneous Rotating World Models, J. Math. Phys. 12 (1971), 1078–1082ADSCrossRefGoogle Scholar
  8. [8]
    István Ozsváth and Leland Sapiro, The Schucking Problem, J. Math. Phys. 28 (1987), 2066–2073.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [9]
    István Ozsváth, An Embedding Problem, J Math. Phys. 29 (1987), 825–834.CrossRefGoogle Scholar
  10. [10]
    István Ozsváth, Embedding Problem II, J. Math. Phys. 33 (1992), 229–247.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    István Ozsváth and Engelbert Schucking, The World Viewed from Outside,in print, J. Geometry and Physics.Google Scholar
  12. [12]
    István Ozsváth and Engelbert Schucking, Isometric Embedding for Homogeneous Compact 3-Manifolds, General Relativity and Gravitation 28 (1996), 999–1011.MathSciNetADSMATHCrossRefGoogle Scholar
  13. [13]
    David Griffiths, Introduction to Elementary Particles, John Wiley and Sons, New York-Chichester-Bribane-Toronto-Singapore, 1987.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • István Ozsváth

There are no affiliations available

Personalised recommendations