Skip to main content

Wave Maps in General Relativity

  • Chapter
On Einstein’s Path

Abstract

Wave maps from a pseudo-Riemannian manifold of hyperbolic (Lorentzian) signature (V, g) into a pseudo-Riemannian manifold are the generalization of the usual wave equations for scalar functions on (V, g). They are the counterpart in hyperbolic signature of the harmonic mappings between properly Riemannian manifolds. The first wave maps to be considered in physics were the σ-models, e.g., the mapping from the Minkowski spacetime into the 3-sphere which models the classical dynamics of 4-meson fields linked by the relation

$$ \sum\limits_{a = 1}^4 {|{f_a}} {|^2} = 1.$$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bachelot, A. Gravitational scattering of electromagnetic field by a Schwarzchild black hole, Ann. Inst. H. Poincaré 54 (1991) 261, 320.

    MathSciNet  Google Scholar 

  2. Chaohao, Gu. On the Cauchy problem for harmonic maps on two-dimensional Minkowski space, Comm. Pure and App. Math 33 (1980) 727–737.

    Article  MATH  Google Scholar 

  3. Choquet-Bruhat, Y. Partial Differential Equations on a Manifold, Batelle Rencontres (1967), eds. C. DeWitt and J. Wheeler, Benjamin.

    Google Scholar 

  4. Choquet-Bruhat, Y. C solutions of nonlinear hyperbolic equations, Gen. Rel. Gray. 2 (1972) 359–362.

    Article  MathSciNet  ADS  Google Scholar 

  5. Choquet-Bruhat, Y. and C. Gilain, G. Relativité Générale: difféomorphismes harmoniques et unicité, C. R. Ac. Sci., Paris 279 (1974) 827–830.

    MathSciNet  ADS  MATH  Google Scholar 

  6. Choquet-Bruhat, Y. Christodoulou, D. and Francaviglia, M. Cauchy data on a manifold, Ann. Inst. Poincaré XXXI no. 4 (1979) 399–414.

    MathSciNet  Google Scholar 

  7. Choquet-Bruhat, Y. Hyperbolic harmonic maps, Ann Inst. Poincaré 46, 97–111.

    Google Scholar 

  8. Choquet-Bruhat, Y. and DeWitt-Morette, C. Analysis, Manifolds and Physics, 2nd ed. North-Holland Publishing Co., Amsterdam (1989).

    Google Scholar 

  9. Choquet-Bruhat, Y. and Moncrief, V. Existence theorem for Einstein’s equations with one parameter isometry group, Proc. Symp. Amer. Math. Soc. 59, Brezis and Segal ed. (1996) 61–80.

    MathSciNet  Google Scholar 

  10. Christodoulou, D. and Talvilar-Zadeh, A. On the regularity of spherically symmetric wave maps, Comm. Pure Ap. Math. 46 (1993) 1041–1091.

    Article  MATH  Google Scholar 

  11. Chrusciel, P. On uniqueness in the large of solutions of Einstein Equations, Proc. Center for Math., Australian Nat. Univ. 27 (1991).

    MATH  Google Scholar 

  12. Dionne, P. Sur les problèmes hyperboliques bien posés J Anal. Math. Jerusalem 1 (1962) 1–90.

    Article  MathSciNet  Google Scholar 

  13. Eells, J. and Sampson, H. Harmonic maps, Amer. J. Math. 86 (1964) 109–160.

    Article  MathSciNet  MATH  Google Scholar 

  14. Geroch, R. Domains of dependence, J Math. Phys. 11 (1970) 437–449.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Ginibre, J. and Velo, G. The Cauchy problem for the 0(N), CP(N-1) and GC(N,p) models, Ann. Phys. 142, no. 2 (1982) 393–415.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Hawking, S. and Ellis, G. F. R. The Global Structure of Spacetime, Cambridge Univ. Press (1973).

    Google Scholar 

  17. Klainerman, S. and Machedon, M. Spacetime estimates for null forms and the local existence theorem, Corn. Pure App. Math. 46 (1993) 1221–1268.

    Article  MathSciNet  MATH  Google Scholar 

  18. Leray, J. Hyperbolic differential equations Inst. Adv. Stud., Princeton (1952).

    Google Scholar 

  19. Lichnerowicz, A. Applications harmoniques et variétés Kahleriennes, Symposia Matematica III (1970) 341–402.

    ADS  Google Scholar 

  20. Misner, C. W. Harmonic maps as models of physical theories, Phys. Rev. D (1978) 4510–4524.

    Google Scholar 

  21. Moncrief, V. Reduction of Einstein’s equations for vacuum spacetimes with spacelike U(1) isometry groups, Ann. Phys. 167 no. 1 (1986) 118–142.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. Muller, S. and Struwe, M. Global existence of wave maps in 2+1 dimensions with finite energy data, Topological Methods in Nonlinear Analysis 7 no. 2 (1996) 245–261.

    MathSciNet  Google Scholar 

  23. Nicolas, J. P. Non-linear Klein Gordon equations on Schwarzchild like metrics, J. Math. Pures App. 74 (1995) 35–58.

    MathSciNet  ADS  MATH  Google Scholar 

  24. Nutku, Y. Harmonic maps in physics, Ann. Inst. H. Poincaré A21 (1974) 175–183.

    MathSciNet  ADS  Google Scholar 

  25. Shatah, J. Weak solutions and development of singularities in the SU(2) a-model, Comm. Pure App. Math, 41 (1988) 459–469.

    Article  MathSciNet  MATH  Google Scholar 

  26. Shatah, J. and Talvilar-Zadeh, A. Non-uniqueness and development of singularities for the harmonic maps of the Minkowski space, preprint.

    Google Scholar 

  27. Sogge, C. On local existence for wave equations satisfying variable coefficients null conditions, Comm. Part. Diff. Eq. 18 (1993) 1795–1821.

    Article  MathSciNet  MATH  Google Scholar 

  28. Stoeger, W. R. Rosen bimetric theory of gravity as a harmonic map, Proc. Third M. Grossman Meeting ed. Hu Ning, Noth Holland (1983) 921–925.

    Google Scholar 

  29. Choquet-Bruhat, Y. Applications d’ondes sur un univers en expansion, C.R. Acad. Sci Paris 326 (1998) 1175–1180.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Choquet-Bruhat, Y. (1999). Wave Maps in General Relativity. In: Harvey, A. (eds) On Einstein’s Path. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1422-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1422-9_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7137-6

  • Online ISBN: 978-1-4612-1422-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics