Skip to main content

Path Integrals and Stability

  • Chapter
Mathematical Control Theory

Abstract

A path integral associated with a dynamical system is an integral of a memoryless function of the system variables which, when integrated along trajectories of the system, depends only on the value of the trajectory and its derivatives at the endpoints of the integration interval. In this chapter we study path independence for linear systems and integrals of quadratic differential forms. These notions and the results are subsequently applied to stability questions. This leads to Lyapunov stability theory for autonomous systems described by high-order differential equations, and to more general stability concepts for systems in interaction with their environment. The latter stability issues are intimately related to the theory of dissipative systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. W. Brockett and J. L. Willems, Frequency domain stability criteria, Parts I and II, IEEE Transactions on Automatic Control, volume 10, pages 255–261 and 407-413, 1965.

    Article  MathSciNet  Google Scholar 

  2. R. W. Brockett, The status of stability theory for deterministic systems, IEEE Transactions on Automatic Control, volume 11, pages 596–606, 1966.

    Article  Google Scholar 

  3. R. W. Brockett, Path integrals, Lyapunov functions, and quadratic minimization, Proceedings of the 4th Allerton Conference on Circuit and System Theory, pages 685–698, 1966.

    Google Scholar 

  4. R. W. Brockett and H. B. Lee, Frequency domain instability criteria for time-varying and nonlinear systems, Proceedings of the IEEE, volume 55, pages 604–619, 1967.

    Article  Google Scholar 

  5. R. W. Brockett, Finite Dimensional Linear Systems, Wiley, New York, 1970.

    MATH  Google Scholar 

  6. J. C. Doyle, Analysis of feedback systems with structured uncertainties, Proceedings of the IEE, volume D-129, pages 242–251, 1982.

    MathSciNet  Google Scholar 

  7. P. A. Fuhrmann, Algebraic methods in system theory, Mathematical System Theory: The Influence of R. E. Kaiman, edited by A. C. Antoulas, Springer-Verlag, New York, pages 233–265, 1991.

    Google Scholar 

  8. P. A. Fuhrmann, A Polynomial Approach to Linear Algebra, Springer-Verlag, New York, 1996.

    Book  MATH  Google Scholar 

  9. V. L. Kharitonov, Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, DifferentsiaV nye Uravneniya, volume 14, pages 2086–2088, 1978.

    MathSciNet  MATH  Google Scholar 

  10. A. Megretski and A. Rantzer, System analysis via integral quadratic constraints, IEEE Transactions on Automatic Control, volume 42, pages 819–830, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. J. Minnichelli, J. J. Anagnost, and C. A. Desoer, An elementary proof of Kharitonov’s stability theorem with extensions, IEEE Transactions on Automatic Control, volume 34, pages 995–998, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Packard and J. Doyle, Quadratic stability with real and complex perturbations, IEEE Transactions on Automatic Control, volume 35, pages 198–201, 1987.

    Article  MathSciNet  Google Scholar 

  13. J. W. Polderman and J. C. Willems, Introduction to Mathematical Systems Theory: A Behavioral Approach, Springer-Verlag, New York, 1998.

    Google Scholar 

  14. V. M. Popov, Absolute stability of nonlinear systems of automatic control, Automation and Remote Control, volume 22, pages 857–875, 1962.

    Google Scholar 

  15. P. Rapisarda and J. C. Willems, State maps for linear systems, SIAM Journal on Control and Optimization, volume 35, pages 1053–1091, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. G. Safonov Stability and Robustness of Multivariable Feedback Systems, The MIT Press, Cambridge, MA, 1980.

    MATH  Google Scholar 

  17. H. L. Trentelman and J. C. Willems, Every storage function is a state function, Systems & Control Letters, volume 32, pages 249–259, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. L. Trentelman and J. C. Willems, control in a behavioral context, Part 1: The full information case, IEEE Transactions on Automatic Control, to appear.

    Google Scholar 

  19. J. C. Willems, The Analysis of Feedback Systems, The MIT Press, Cambridge, MA, 1971.

    MATH  Google Scholar 

  20. J. C. Willems, Dissipative dynamical systems, Part I: General theory; Part II: Linear systems with quadratic supply rates, Archive for Rational Mechanics and Analysis, volume 45, pages 321–351 and 352-393, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. C. Willems, From time series to linear system, Part I: Finite dimensional linear time invariant systems; Part II: Exact modelling; Part III: Approximate modelling, Automatica, volume 22, pages 561–580, 675-694, 1986; volume 23, pages 87-115, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. C. Willems, Models for dynamics, Dynamics Reported, volume 2, pages 171–269, 1989.

    MathSciNet  Google Scholar 

  23. J. C. Willems, Paradigms and puzzles in the theory of dynamical systems, IEEE Transactions on Automatic Control, volume 36, pages 259–294, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  24. J. C. Willems and H. L. Trentelman, On quadratic differential forms, SIAM Journal on Control and Optimization, to appear.

    Google Scholar 

  25. J. C. Willems and R. Tempo, The Kharitonov theorem with degree drop, submitted to the IEEE Transactions on Automatic Control.

    Google Scholar 

  26. G. Zames, On the input-output stability of time-vary ing nonlinear feedback systems. Part I: Conditions derived using concepts of loop gain, conicity, and positivity; Part II: Conditions involving circles in the frequency plane and sector nonlinearities, IEEE Transactions on Automatic Control, volume 11, pages 228–238 and 465-476, 1966.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Willems, J.C. (1999). Path Integrals and Stability. In: Baillieul, J., Willems, J.C. (eds) Mathematical Control Theory. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1416-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1416-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7136-9

  • Online ISBN: 978-1-4612-1416-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics