Quantum Hall Fluids as W1+∞ Minimal Models

  • Andrea Cappelli
  • Carlo A. Trugenberger
  • Guillermo R. Zemba
Part of the CRM Series in Mathematical Physics book series (CRM)


We review our recent work on the algebraic characterization of quantum Hall fluids. Specifically, we explain how the incompressible quantum fluid ground states can be classified by effective edge field theories with the W 1+∞ dynamical symmetry of “quantum area-preserving diffeomorphisms.” Using the representation theory of W 1+∞ we show how all fluids with filling factors m/(pm + 1) and v = m/(pm - 1) with m and p positive integers and p even, correspond exactly to the W 1+∞ minimal models.


Minimal Model Fusion Rule Quantum Hall Effect Filling Fraction Edge Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Prange and S. M. Girvin, eds. The Quantum Hall Effect. Springer-Verlag, New York, 1990.Google Scholar
  2. 2.
    R. B. Laughlin. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50 (18): 1395–1398, 1983.ADSCrossRefGoogle Scholar
  3. 3.
    R. B. Laughlin. Elementary theory: The incompressible quantum fluid. In Prange and Girvin [1].Google Scholar
  4. 4.
    A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field. Nucl.Phys., B241 (2): 333–380, 1984; P. Ginsparg. Applied conformal field theory. In É. Brézin and J. Zinn-Justin, eds., Champs,cordes et.phénomènes critiques,(Les Houches, 1988), 1990. North-Holland, Amsterdam, pages 1–168.Google Scholar
  5. 5.
    J. Polchinski. Effective field theory and the Fermi surface. Technical Report NSF-ITP-92–132, ITP, UCSB, 1992.Google Scholar
  6. 6.
    A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Infinite symmerty in the quantum Hall effect. Nucl. Phys., B396 (2–3): 465–490, 1993.MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    A. Cappelli, G. V. Dunne, C. A. Trugenberger, and G. R. Zemba. Conformal symmetry and universal properties of quantum Hall states. Nucl. Phys., B398 (3): 531–567, 1993.MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    A. Cappelli, G. V. Dunne, C. A. Trugenberger, and G. R. Zemba. Symmetry aspects and finite-size scaling of quantum Hall fluids. In L. Alvarez-Gaumé et al., eds., Common Trends in Condensed Matter and High-Energy Physics, (Chia, Sardinia, 1992), volume 33C of Nuclear Phys. B. Proc. Suppl., 1993. pages 21–34.Google Scholar
  9. 9.
    A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Large N limit in the quantum Hall effect. Phys. Lett., B306 (1–2): 100–107, 1993.ADSGoogle Scholar
  10. 10.
    A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Classification of quantum Hall universality classes by W 1+∞ symmetry. Phys. Rev. Lett., 72 (12): 1902–1905, 1994.ADSCrossRefGoogle Scholar
  11. 11.
    A. Cappelli, C. A. Trugenberger, and G. R. Zemba. W 1+∞ dynamics of edge excitations in the quantum Hall effect. Ann. Phys., 246 (1): 86–120,1996.MathSciNetADSMATHCrossRefGoogle Scholar
  12. 12.
    A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Stable hierarchical quantum Hall fluids as W 1+∞ minimal models. Nucl. Phys., B448 (3): 470–504, 1995.MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    S. Iso, D. Karabali, and B. Sakita. One-dimensional fermoins as two-dimensional droplets via Chern-Simons theory. Nucl. Phys., B388 (3): 700–714, 1992; S. Iso, D. Karabali, and B. Sakita. fermions in the lowest Landau level: Bosonization, W algebra, droplets, chiral bosons. Phys. Lett., B296 (1–2): 143–150, 1992.Google Scholar
  14. 14.
    M. Flohr and R. Varnhagen Infinite symmetry in the fractional quantum Hall effect. J. Phys A: Math. Gen.,27 (11): 3999–4010, 1994; D. Karabali. Algebraic aspects of the fractional quantum Hall effect. Nucl. Phys., B419 (3): 437–454, 1994; D. Karabali. W algebras in the quantum Hall effect. Nucl. Phys., B428 (3): 531–544, 1994.Google Scholar
  15. 15.
    I. Balsas. The large-N limit of extended conformal symmetries. Phys. Lett., B228 (1): 57–63, 1989; C. N. Pope, X. Shen, and L. J. Romans. W and the Racah-Wigner algebra. Nucl. Phys.,B339 (1): 191–221, 1990; X. Shen. W infinity and string theory. Int. J. Mod. Phys.,A7 (28): 6953–6993, 1992.Google Scholar
  16. 16.
    X. G. Wen. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys.,B6 (10): 1711–1762, 1992.ADSGoogle Scholar
  17. 17.
    M. Stone. Edge waves in the quantum Hall effect. Ann. Phys.,207 (1): 38–52, 1991; M. Stone. Schur functions, chiral bosons and the quantum-Hall-effect edges states. Phys. Rev.,42B (13): 8399–8404, 1990; M. Stone. Vertex operators in quantum Hall effect. Int. J. Mod. Phys., B5 (3): 509–527, 1991.Google Scholar
  18. 18.
    S. M. Girvin, A. H. MacDonald, and P. M. Platzman. Magnetoroton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev., B33 (4): 2481–2494, 1986; S. M. Girvin. Collective excitations. In Prange and Girvin [1].ADSGoogle Scholar
  19. 19.
    V. Kac and A. Radul. Quasi-finite highest-weight modules over the Lie algebra of differential operators on the circle. Commun. Math. Phys.,157 (3): 429–457, 1993; H. Awata, M. Fukuma, Y. Matsuo, and S. Odake. Representation theory of the W 1+∞ algebra. In Quantum Field Theory, Integrable Models, and Beyond, (Kyoto, 1994), number 118 in Prog. Theor. Phys. Suppl, 1995. pages 343–373.Google Scholar
  20. 20.
    E. Frenkel, V. Kac, A. Radul, and W. Wang. W 1+∞ and W(g1 N ) with central charge N. Commun. Math. Phys., 170 (2): 337–257, 1995.MathSciNetADSMATHCrossRefGoogle Scholar
  21. 21.
    I. Vaysburd and A. Radul. Differential operators and W-algebra. Phys. Lett.,B274 (3–4): 317–322, 1992.MathSciNetADSGoogle Scholar
  22. 22.
    F. D. M. Haldane. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett., 51 (7): 605–608, 1983.MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    B. I. Halpern. Statistics of quasi-particles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett., 52 (18): 1583–1586, 1984.ADSCrossRefGoogle Scholar
  24. 24.
    J. Fröhlich, U. M. Studer, and E. Thiran. An ADE-O classification of minimal incompressible quantum Hall fluids. cond-mat/9406009.Google Scholar
  25. 25.
    J. K. Jain. Microscopic theory of the fractional quantum Hall effect. Adv. Phys., 41 (2): 105–146, 1992.ADSCrossRefGoogle Scholar
  26. 26.
    B. I. Halperin, P. A. Lee, and N. Read. Theory of the half-filled Landau level. Phys. Rev., B47 (12): 7312–7343, 1993.ADSGoogle Scholar
  27. 27.
    R. R. Du, H. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West. Experimental evidence for new particles in the fractional quantum Hall effect. Phys. Rev. Lett.,70 (19): 2944–2947, 1993; W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West. How real are composite fermions. Phys. Rev. Lett.,7 (23): 3850–3853, 1993.Google Scholar
  28. 28.
    B. I. Halperin. Quantized Hall conductance, current-carrying edges states, and the existence of extended states in two-dimensional disordered potential. Phys. Rev., B25 (4): 2185–2190, 1982.ADSGoogle Scholar
  29. 29.
    X.-G. Wen. Mod. Phys. Lett., B5: 39, 1991.ADSGoogle Scholar
  30. 30.
    J. Fröhlich and A. Zee. Large-scale physics of the quantum Hall fluids. Nucl. Phys.,B364 (3): 517–540, 1991; X.-G. Wen and A. Zee. Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Phys. Rev., 46B (4): 2290–2301, 1993.Google Scholar
  31. 31.
    R. Floreanini and R. Jackiw. Self-dual fields as charge-density solitons. Phys. Rev. Lett., 59 (17): 1873–1876, 1987.ADSCrossRefGoogle Scholar
  32. 32.
    F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity. World Scientific, Teaneck, NJ, 1990.Google Scholar
  33. 33.
    L. W. Engel, S. W. Hwuang, T. Sajoto, D. C. Tsui, and M. Shayegan. Fractional quantum Hall effect at v = 2/3 and 3/5 in tilted magnetic fields. Phys. Rev., B45 (7): 3418–3425, 1992; J. Frölich et al. The fractional quantum Hall effect, Chern-Simons theory, and integral lattices. Technical Report ETH-TH/94–18, ETH-Zentrum, 1994.Google Scholar
  34. 34.
    R. C. Ashoori, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. West. Edge magnetoplasmons in the time domain. Phys.Rev. , B45 (7): 3894–3897, 1992.ADSGoogle Scholar
  35. 35.
    F. P. Milliken, C. P. Umbach, and R. A. Webb. Evidence for a Luttinger liquid in the fractional quantum Hall effect. Technical report, IBM, 1994.Google Scholar
  36. 36.
    K. Moon, H. Yi, C. L. Kane, S. M. Girvin, and M. P. A. Fisher. Resonant tunneling between quantum Hall edge states. Phys. Rev. Lett.,71 (26): 4381–4383, 1993; P. Fendley, A. W. W. Ludwig, and H. Saleur. Exact conductance through point contacts in the v = 1/3fractional quantum Hall effect. Phys. Rev. Lett.,74: 3005–3008, 1995.Google Scholar
  37. 37.
    C. L. Kane and M. P. A. Fisher. Impurity scattering and transport of fractional quantum hall edge states. cond-mat/9409028.Google Scholar
  38. 38.
    V. A. Fateev and A. B. Zamolodchikov Conformal quantum field theory models in two dimensions having Z3 symmetry. Nucl. Phys., B280 (4): 644–600, 1987; V. A. Fateev and S. L. Lykyanov. The models of two-dimensional conformal quantum field theory with Zn symmetry. Int. J. Mod. Phys., A3 (2): 507–520, 1988.Google Scholar
  39. 39.
    G. Moore and N. Read. Nonabelions in the fractional quantum Hall effect. Nucl. Phys.,B360 (2–3): 362–396, 1991.MathSciNetADSCrossRefGoogle Scholar
  40. 40.
    X.-G. Wen. Topological order and edge structure of v = 1/2 quantum Hall state. Phys. Rev. Lett.,70: 355, 1993.ADSCrossRefGoogle Scholar
  41. 41.
    R. Rajaraman. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland, Amsterdam, 1982.MATHGoogle Scholar
  42. 42.
    N. Read. Excitation structure of the hierarchy scheme in the fractional quantum Hall effect. Phys. Rev. Lett.,65 (12): 1502–1505, 1990.ADSCrossRefGoogle Scholar
  43. 43.
    A. Cappelli, C. Itzykson, and J.-B. Zuber. Modular invariant partition functions in two dimensions. Nucl. Phys.,B280 (3): 445–465, 1987.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1999

Authors and Affiliations

  • Andrea Cappelli
  • Carlo A. Trugenberger
  • Guillermo R. Zemba

There are no affiliations available

Personalised recommendations