Skip to main content

Quantum Hall Fluids as W 1+∞ Minimal Models

  • Chapter
Particles and Fields

Abstract

We review our recent work on the algebraic characterization of quantum Hall fluids. Specifically, we explain how the incompressible quantum fluid ground states can be classified by effective edge field theories with the W 1+∞ dynamical symmetry of “quantum area-preserving diffeomorphisms.” Using the representation theory of W 1+∞ we show how all fluids with filling factors m/(pm + 1) and v = m/(pm - 1) with m and p positive integers and p even, correspond exactly to the W 1+∞ minimal models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Prange and S. M. Girvin, eds. The Quantum Hall Effect. Springer-Verlag, New York, 1990.

    Google Scholar 

  2. R. B. Laughlin. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50 (18): 1395–1398, 1983.

    Article  ADS  Google Scholar 

  3. R. B. Laughlin. Elementary theory: The incompressible quantum fluid. In Prange and Girvin [1].

    Google Scholar 

  4. A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov. Infinite conformal symmetry in two-dimensional quantum field. Nucl.Phys., B241 (2): 333–380, 1984; P. Ginsparg. Applied conformal field theory. In É. Brézin and J. Zinn-Justin, eds., Champs,cordes et.phénomènes critiques,(Les Houches, 1988), 1990. North-Holland, Amsterdam, pages 1–168.

    Google Scholar 

  5. J. Polchinski. Effective field theory and the Fermi surface. Technical Report NSF-ITP-92–132, ITP, UCSB, 1992.

    Google Scholar 

  6. A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Infinite symmerty in the quantum Hall effect. Nucl. Phys., B396 (2–3): 465–490, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Cappelli, G. V. Dunne, C. A. Trugenberger, and G. R. Zemba. Conformal symmetry and universal properties of quantum Hall states. Nucl. Phys., B398 (3): 531–567, 1993.

    Article  MathSciNet  ADS  Google Scholar 

  8. A. Cappelli, G. V. Dunne, C. A. Trugenberger, and G. R. Zemba. Symmetry aspects and finite-size scaling of quantum Hall fluids. In L. Alvarez-Gaumé et al., eds., Common Trends in Condensed Matter and High-Energy Physics, (Chia, Sardinia, 1992), volume 33C of Nuclear Phys. B. Proc. Suppl., 1993. pages 21–34.

    Google Scholar 

  9. A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Large N limit in the quantum Hall effect. Phys. Lett., B306 (1–2): 100–107, 1993.

    ADS  Google Scholar 

  10. A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Classification of quantum Hall universality classes by W 1+∞ symmetry. Phys. Rev. Lett., 72 (12): 1902–1905, 1994.

    Article  ADS  Google Scholar 

  11. A. Cappelli, C. A. Trugenberger, and G. R. Zemba. W 1+∞ dynamics of edge excitations in the quantum Hall effect. Ann. Phys., 246 (1): 86–120,1996.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. Cappelli, C. A. Trugenberger, and G. R. Zemba. Stable hierarchical quantum Hall fluids as W 1+∞ minimal models. Nucl. Phys., B448 (3): 470–504, 1995.

    Article  MathSciNet  ADS  Google Scholar 

  13. S. Iso, D. Karabali, and B. Sakita. One-dimensional fermoins as two-dimensional droplets via Chern-Simons theory. Nucl. Phys., B388 (3): 700–714, 1992; S. Iso, D. Karabali, and B. Sakita. fermions in the lowest Landau level: Bosonization, W algebra, droplets, chiral bosons. Phys. Lett., B296 (1–2): 143–150, 1992.

    Google Scholar 

  14. M. Flohr and R. Varnhagen Infinite symmetry in the fractional quantum Hall effect. J. Phys A: Math. Gen.,27 (11): 3999–4010, 1994; D. Karabali. Algebraic aspects of the fractional quantum Hall effect. Nucl. Phys., B419 (3): 437–454, 1994; D. Karabali. W algebras in the quantum Hall effect. Nucl. Phys., B428 (3): 531–544, 1994.

    Google Scholar 

  15. I. Balsas. The large-N limit of extended conformal symmetries. Phys. Lett., B228 (1): 57–63, 1989; C. N. Pope, X. Shen, and L. J. Romans. W and the Racah-Wigner algebra. Nucl. Phys.,B339 (1): 191–221, 1990; X. Shen. W infinity and string theory. Int. J. Mod. Phys.,A7 (28): 6953–6993, 1992.

    Google Scholar 

  16. X. G. Wen. Theory of the edge states in fractional quantum Hall effects. Int. J. Mod. Phys.,B6 (10): 1711–1762, 1992.

    ADS  Google Scholar 

  17. M. Stone. Edge waves in the quantum Hall effect. Ann. Phys.,207 (1): 38–52, 1991; M. Stone. Schur functions, chiral bosons and the quantum-Hall-effect edges states. Phys. Rev.,42B (13): 8399–8404, 1990; M. Stone. Vertex operators in quantum Hall effect. Int. J. Mod. Phys., B5 (3): 509–527, 1991.

    Google Scholar 

  18. S. M. Girvin, A. H. MacDonald, and P. M. Platzman. Magnetoroton theory of collective excitations in the fractional quantum Hall effect. Phys. Rev., B33 (4): 2481–2494, 1986; S. M. Girvin. Collective excitations. In Prange and Girvin [1].

    ADS  Google Scholar 

  19. V. Kac and A. Radul. Quasi-finite highest-weight modules over the Lie algebra of differential operators on the circle. Commun. Math. Phys.,157 (3): 429–457, 1993; H. Awata, M. Fukuma, Y. Matsuo, and S. Odake. Representation theory of the W 1+∞ algebra. In Quantum Field Theory, Integrable Models, and Beyond, (Kyoto, 1994), number 118 in Prog. Theor. Phys. Suppl, 1995. pages 343–373.

    Google Scholar 

  20. E. Frenkel, V. Kac, A. Radul, and W. Wang. W 1+∞ and W(g1 N ) with central charge N. Commun. Math. Phys., 170 (2): 337–257, 1995.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. I. Vaysburd and A. Radul. Differential operators and W-algebra. Phys. Lett.,B274 (3–4): 317–322, 1992.

    MathSciNet  ADS  Google Scholar 

  22. F. D. M. Haldane. Fractional quantization of the Hall effect: A hierarchy of incompressible quantum fluid states. Phys. Rev. Lett., 51 (7): 605–608, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  23. B. I. Halpern. Statistics of quasi-particles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett., 52 (18): 1583–1586, 1984.

    Article  ADS  Google Scholar 

  24. J. Fröhlich, U. M. Studer, and E. Thiran. An ADE-O classification of minimal incompressible quantum Hall fluids. cond-mat/9406009.

    Google Scholar 

  25. J. K. Jain. Microscopic theory of the fractional quantum Hall effect. Adv. Phys., 41 (2): 105–146, 1992.

    Article  ADS  Google Scholar 

  26. B. I. Halperin, P. A. Lee, and N. Read. Theory of the half-filled Landau level. Phys. Rev., B47 (12): 7312–7343, 1993.

    ADS  Google Scholar 

  27. R. R. Du, H. Stormer, D. C. Tsui, L. N. Pfeiffer, and K. W. West. Experimental evidence for new particles in the fractional quantum Hall effect. Phys. Rev. Lett.,70 (19): 2944–2947, 1993; W. Kang, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. W. West. How real are composite fermions. Phys. Rev. Lett.,7 (23): 3850–3853, 1993.

    Google Scholar 

  28. B. I. Halperin. Quantized Hall conductance, current-carrying edges states, and the existence of extended states in two-dimensional disordered potential. Phys. Rev., B25 (4): 2185–2190, 1982.

    ADS  Google Scholar 

  29. X.-G. Wen. Mod. Phys. Lett., B5: 39, 1991.

    ADS  Google Scholar 

  30. J. Fröhlich and A. Zee. Large-scale physics of the quantum Hall fluids. Nucl. Phys.,B364 (3): 517–540, 1991; X.-G. Wen and A. Zee. Classification of Abelian quantum Hall states and matrix formulation of topological fluids. Phys. Rev., 46B (4): 2290–2301, 1993.

    Google Scholar 

  31. R. Floreanini and R. Jackiw. Self-dual fields as charge-density solitons. Phys. Rev. Lett., 59 (17): 1873–1876, 1987.

    Article  ADS  Google Scholar 

  32. F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity. World Scientific, Teaneck, NJ, 1990.

    Google Scholar 

  33. L. W. Engel, S. W. Hwuang, T. Sajoto, D. C. Tsui, and M. Shayegan. Fractional quantum Hall effect at v = 2/3 and 3/5 in tilted magnetic fields. Phys. Rev., B45 (7): 3418–3425, 1992; J. Frölich et al. The fractional quantum Hall effect, Chern-Simons theory, and integral lattices. Technical Report ETH-TH/94–18, ETH-Zentrum, 1994.

    Google Scholar 

  34. R. C. Ashoori, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, and K. West. Edge magnetoplasmons in the time domain. Phys.Rev. , B45 (7): 3894–3897, 1992.

    ADS  Google Scholar 

  35. F. P. Milliken, C. P. Umbach, and R. A. Webb. Evidence for a Luttinger liquid in the fractional quantum Hall effect. Technical report, IBM, 1994.

    Google Scholar 

  36. K. Moon, H. Yi, C. L. Kane, S. M. Girvin, and M. P. A. Fisher. Resonant tunneling between quantum Hall edge states. Phys. Rev. Lett.,71 (26): 4381–4383, 1993; P. Fendley, A. W. W. Ludwig, and H. Saleur. Exact conductance through point contacts in the v = 1/3fractional quantum Hall effect. Phys. Rev. Lett.,74: 3005–3008, 1995.

    Google Scholar 

  37. C. L. Kane and M. P. A. Fisher. Impurity scattering and transport of fractional quantum hall edge states. cond-mat/9409028.

    Google Scholar 

  38. V. A. Fateev and A. B. Zamolodchikov Conformal quantum field theory models in two dimensions having Z3 symmetry. Nucl. Phys., B280 (4): 644–600, 1987; V. A. Fateev and S. L. Lykyanov. The models of two-dimensional conformal quantum field theory with Zn symmetry. Int. J. Mod. Phys., A3 (2): 507–520, 1988.

    Google Scholar 

  39. G. Moore and N. Read. Nonabelions in the fractional quantum Hall effect. Nucl. Phys.,B360 (2–3): 362–396, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  40. X.-G. Wen. Topological order and edge structure of v = 1/2 quantum Hall state. Phys. Rev. Lett.,70: 355, 1993.

    Article  ADS  Google Scholar 

  41. R. Rajaraman. Solitons and Instantons. An Introduction to Solitons and Instantons in Quantum Field Theory. North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  42. N. Read. Excitation structure of the hierarchy scheme in the fractional quantum Hall effect. Phys. Rev. Lett.,65 (12): 1502–1505, 1990.

    Article  ADS  Google Scholar 

  43. A. Cappelli, C. Itzykson, and J.-B. Zuber. Modular invariant partition functions in two dimensions. Nucl. Phys.,B280 (3): 445–465, 1987.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cappelli, A., Trugenberger, C.A., Zemba, G.R. (1999). Quantum Hall Fluids as W 1+∞ Minimal Models. In: Semenoff, G., Vinet, L. (eds) Particles and Fields. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1410-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1410-6_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7133-8

  • Online ISBN: 978-1-4612-1410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics