Skip to main content

Discrete Gauge Theories

  • Chapter
Particles and Fields

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

We present a self-contained treatment of planar gauge theories broken down to some finite residual gauge group H via the Higgs mechanism. The main focus is on the discrete H gauge theory describing the long-distance physics of such a model. The spectrum features global H charges, magnetic vortices, and dyonic combinations. Due to the AharonovBohm effect, these particles exhibit topological interactions. Among other things, we review the Hopf algebra related to this discrete H gauge theory, which provides a unified description of the spin, braid, and fusion properties of the particles in this model. Exotic phenomena such as flux metamorphosis, Alice fluxes, Cheshire charge, (non-)Abelian braid statistics, the generalized spin-statistics connection, and non-Abelian AharonovBohm scattering are explained and illustrated by representative examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Coleman. Classical lumps and their quantum descendents. In Aspects of Symmetry. Cambridge Univ. Press, Cambridge, pages 185–264, 1985.

    Google Scholar 

  2. N. D. Mermin The topological theory of defects in ordered media. Rev. Mod. Phys., 51 (3): 591–648, 1979.

    Article  MathSciNet  ADS  Google Scholar 

  3. J. Preskill. Vortices and monopoles. In P. Ramond and R. Stora, eds., Architecture of the Fundamental Interactions at Short Distances. North-Holland, Amsterdam, pages 235–338, 1987.

    Google Scholar 

  4. R. Rajaraman. Solitons and Instantons. North-Holland, Amsterdam, 1982.

    MATH  Google Scholar 

  5. A. Abrikosov. On the magnetic properties of superconductors of the second group. Soy. Phys.-JETP,5 (6): 1174–1182, 1957.

    Google Scholar 

  6. H. B. Nielsen and P. Olesen. Vortex line models for dual strings. Nucl. Phys.,B61 (1): 45–61, 1973.

    Article  MathSciNet  ADS  Google Scholar 

  7. G. ‘t Hooft. Magnetic monopoles in unified gauge theories. Nucl. Phys.,B79: 276–284, 1974.

    Article  ADS  Google Scholar 

  8. A. M. Polyakov. Particle spectrum in quantum field theory. JETP Lett., 20 (6): 194–195, 1974.

    ADS  Google Scholar 

  9. P. A. M. Dirac. Quantised singularities in the electromagnetic field. Proc. Roy. Soc. London, A133: 60–72, 1931.

    ADS  Google Scholar 

  10. T. H. R. Skyrme. A nonlinear field theory. Proc. Roy. Soc., A260: 127–138,1961.

    MathSciNet  ADS  Google Scholar 

  11. D. Finkelstein and J. Rubinstein. Connection between spin, statistics, and kinks. J. Math. Phys.,9: 1762–1779, 1968.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. E. Witten. Current algebra, baryons, and quark confinement. Nucl. Phys., B223 (2): 433–444, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  13. R. H. Brandenberger.Topological defects and structure formation. Int. J. Mod. Phys.,9 (13): 2117–2189, 1994.

    Article  ADS  Google Scholar 

  14. G. E. Volovik. Exotic Properties of Superfluid 3He, volume 1 of Series in Modern Condensed Matter Physics. World Scientific, Singapore, 1992.

    Google Scholar 

  15. M. Bowick, L. Chandar, E. A. Schiff, and A. Srivastava. The cosmological Kibble mechanism in the laboratory: string formation in liquid crystals. Science, 263: 943–945, 1994.

    Article  ADS  Google Scholar 

  16. I. Chuang, R. Durrer, N. Turok, and B. Yurke. Cosmology in the laboratory: defect dynamics in liquid crystals. Science, 251: 1336–1342, 1991.

    Article  ADS  Google Scholar 

  17. A. P. Balachandran, G. Marmo, N. Mukunda, J. S. Nilsson, E. C. G. Sudarshan, and F. Zaccaria. Monopole topology and the problem of color. Phys. Rev. Lett., 50 (20): 1553–1555, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Nelson and A. Manohar. Global color is not always defined. Phys. Rev. Lett., 50 (13): 943–945, 1983.

    Article  MathSciNet  ADS  Google Scholar 

  19. P. Nelson and S. Coleman. What becomes of global color. Nucl. Phys., B237 (1): 1–31, 1984.

    Article  ADS  Google Scholar 

  20. F. A. Bais, P. van Driel, and M. de Wild Propitius. Quantum symmetries in discrete gauge theories. Phys. Lett., B280 (1–2): 63–70, 1992.

    ADS  Google Scholar 

  21. A. P. Balachandran, F. Lizzi, and V. G. Rodgers. Topological symmetry breakdown in cholesterics, nematics and 3He. Phys. Rev. Lett., 52 (20): 1818–1821, 1984.

    Article  ADS  Google Scholar 

  22. E. Witten. Dyons of charge eθ/(2π). Phys. Lett., B86 (3): 283–287, 1979.

    ADS  Google Scholar 

  23. P. Hasenfratz and G. ‘t Hooft. Fermion-boson puzzle in a gauge theory. Phys. Rev. Lett., 36 (19): 1119–1122, 1976.

    Article  ADS  Google Scholar 

  24. R. Jackiw and C. Rebbi. Spin from isospin in a gauge theory. Phys. Rev. Lett.,36 (19): 1116–1119, 1976.

    Article  ADS  Google Scholar 

  25. F. Wilczek. Magnetic flux, angular momentum and statistics. Phys. Rev. Lett.,48: 1144–1146, 1982.

    Article  MathSciNet  ADS  Google Scholar 

  26. J. M. Leinaas and J. Myrheim. On the theory of identical particles. Nuovo.Cimento, 37B: 1–23, 1977.

    ADS  Google Scholar 

  27. B. I. Halperin. Statistics of quasiparticles and the hierarchy of fractional quantized Hall states. Phys. Rev. Lett., 52 (18): 1583–1586, 1984.

    Article  ADS  Google Scholar 

  28. R. B. Laughlin. Anomalous quantum Hall effect: An incompressible quantum fluid with fractionally charged excitations. Phys. Rev. Lett., 50 (18): 1395–1398, 1983.

    Article  ADS  Google Scholar 

  29. Y.-H. Chen, F. Wilczek, E. Witten, and B. I. Halperin. On anyon superconductivity. Int. J. Mod. Phys.,B3 (7): 1001–1067, 1989.

    MathSciNet  ADS  Google Scholar 

  30. A. L. Fetter, C. B. Hanna, and R. B. Laughlin. Random-phase approximation in the fractional-statistics gas. Phys. Rev.,B39 (13): 9679–9681, 1989.

    ADS  Google Scholar 

  31. R. B. Laughlin. Superconducting ground state of noninteracting particles obeying fractional statistics. Phys. Rev. Lett., 60 (25): 2677–2680, 1988.

    Article  ADS  Google Scholar 

  32. F. Wilczek, ed. Fractional Statistics and Anyon Superconductivity. World Scientific, Teaneck, NJ, 1990.

    Google Scholar 

  33. G. ‘t Hooft. Symmetry breaking through Bell-Jackiw anomalies Phys. Rev. Lett.,37 (1): 8–11, 1976; G. ‘t Hooft. Computation of the quantum effects due to a four-dimensional pseudoparticle. Phys. Rev.,D14 (12): 3432–3450, 1976.

    Google Scholar 

  34. V. A. Rubakov. Superheavy magnetic monopoles and proton decay. Pis’ma Zh. Eksp. Teor. Fiz., 33 (12): 658–660, 1981; V. A. Rubakov. Superheavy magnetic monopoles and proton decay. JETP Lett.,33 (12): 644–646, 1981; V. A. Rubakov. Adler-Bell-Jackiw anomaly and fermion number breaking in the presence of a magnetic monopole. Nucl. Phys.,B203 (2): 311–348, 1982.

    Google Scholar 

  35. C. Callan. Dyon-fermion dynamics. Phys. Rev., D26 (8): 2058–2068, 1982.

    ADS  Google Scholar 

  36. C. Callan. Monopole catalysis of baryon decay. Nucl. Phys., B212 (3): 391–400, 1983.

    Article  ADS  Google Scholar 

  37. M. G. Alford, J. March-Russell, and F. Wilczek. Enhanced baryon number violation due to cosmic strings. Nucl. Phys., B328 (1): 140–158, 1989.

    Article  ADS  Google Scholar 

  38. A. S. Schwarz. Field theories with no local conservation of the electric charge Nucl. Phys., B208 (1): 141–158, 1982.

    Article  ADS  Google Scholar 

  39. Y. Aharonov and D. Bohm. Significance of electromagnetic potential in the quantum theory. Phys. Rev., 115: 485–491, 1959.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. F. A. Bais. Flux metamorphosis. Nucl. Phys., B170 (1, FS 1): 32–43, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  41. F. A. Bais, P. van Driel, and M. de Wild Propitius. Anyons in discrete gauge theories with Chern-Simons terms. Nucl. Phys., B393 (3): 547–570, 1993.

    Article  ADS  Google Scholar 

  42. F. A. Bais and M. de Wild Propitius. Quantum groups in the Higgs phase. Teoret. Mat. Fiz., 98 (3): 509–523, 1994.

    MathSciNet  Google Scholar 

  43. M. de Wild Propitius. Topological Interactions in Broken Gauge Theories. Ph.D. thesis, Universiteit van Amsterdam, 1995.

    Google Scholar 

  44. F. A. Bais, A. Morozov, and M. de Wild Propitius. Charge screeing in the Higgs phase of Chern-Simons electrodynamics Phys. Rev. Lett., 71 (15): 2383–2386, 1993.

    Article  ADS  Google Scholar 

  45. T. D. Imbo and J. March-Russell. Exotic statistics on surfaces. Phys. Lett., B252 (1): 84–90, 1990.

    MathSciNet  ADS  Google Scholar 

  46. M. G. G. Laidlaw and C. M. DeWitt. Feynman functional integrals for systems of indistinguishable particles. Phys. Rev., D3 (6): 1375–1378, 1971.

    ADS  Google Scholar 

  47. L. S. Schulman. Techniques and Applications of Path Integration. Wiley, New York, 1981.

    Google Scholar 

  48. L. S. Schulman. Appoximate topologies. J. Math. Phys., 12 (2): 304–314,1971.

    Article  ADS  Google Scholar 

  49. F. Wilczek. Quantum mechanics of fractional-spin particles. Phys. Rev. Lett.,49 (14): 957–959, 1982.

    Article  MathSciNet  ADS  Google Scholar 

  50. Y.-S. Wu. General theory for quantum statistics in two dimensions. Phys. Rev. Lett., 52 (24): 2103–2106, 1984.

    Article  MathSciNet  ADS  Google Scholar 

  51. L. Brekke, A. F. Falk, S. J. Hughes, and T. D. Imbo. Anyons from bosons. Phys. Lett.,B271 (1): 73–78, 1991.

    MathSciNet  ADS  Google Scholar 

  52. L. Brekke, H. Dijkstra, A. F. Falk, and T. D. Imbo. Novel spin and statistical properties of non-Abelian vortices. Phys. Lett., B304 (1–2): 127–133, 1993.

    ADS  Google Scholar 

  53. L. Krauss and F. Wilczek. Discrete gauge symmetry in continuum theories. Phys. Rev. Lett., 62 (11): 1221–1223, 1989.

    Article  ADS  Google Scholar 

  54. J. Preskill and L. Krauss. Local discrete symmetry and quantum-mechanical hair. Nucl. Phys., B341 (1): 50–100, 1990.

    Article  MathSciNet  ADS  Google Scholar 

  55. P. G. de Gennes. Superconductivity of Metals and Alloys. Benjamin, New York, 1966.

    MATH  Google Scholar 

  56. S. Forte. Quantum mechanics and field theory with fractional spin and statistics. Rev. Mod. Phys., 64 (1): 193–236, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  57. K. Li. Remarks on local discrete symmetry. Nucl. Phys., B361 (2): 437–450, 1991.

    Article  ADS  Google Scholar 

  58. M. G. Alford and J. March-Russell. Discrete gauge theories. Fractional statistics in action. Int. J. Mod. Phys., B5 (16–17): 2641–2673, 1991.

    MathSciNet  ADS  Google Scholar 

  59. M. G. Alford, K.-M. Lee, J. March-Russell, and J. Preskill. Quantum field theory of non-Abelian strings and vortices. Nucl. Phys., B384 (1–2): 251–317, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  60. M. G. Alford and J. March-Russell. New order parameters for non-Abelian gauge theories. Nucl. Phys.,B369 (1–2): 276–298, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  61. H.-K. Lo. Aharonov-Bohm order parameters for non-Abelian gauge theories. Phys. Rev., D52 (12): 7247–7264, 1995; H.-K. Lo. Order parameters for non-Abelian gauge theories. Technical Report IASSNS-HEP-94/2, hep-th/9411133, Institute for Advanced Study, 1994; H.-K. Lo. Elusive order parameters for non-Abelian gauge theories. Technical Report IASSNS-HEP-95/4, hep-th/9502079, Institute for Advanced Study, 1995.

    Google Scholar 

  62. M. Polikarpov, U.-J. Wiese, and M. Zubkov. String representation of the Abelian Higgs theory and Aharonov-Bohm effect on the lattice. Phys. Lett., B309: 133–138, 1993.

    ADS  Google Scholar 

  63. G. ‘t Hooft. On the phase transition towards permanent quark confinement. Nucl. Phys., B138 (1): 1–25, 1978; G. ‘t Hooft. A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys., B153 (1–2): 141–160, 1979.

    Google Scholar 

  64. K. Wilson. Confinement of quarks. Phys. Rev., D10 (8): 2445–2459, 1974.

    ADS  Google Scholar 

  65. A. M. Polyakov. Quark confinement and topology of gauge groups. Nucl. Phys., B120 (3): 429–458, 1977.

    Article  MathSciNet  ADS  Google Scholar 

  66. R. F. Streater and A. S. Wightman. PCT, Spin, and Statistics and All That. Benjamin, New York, 1964.

    Google Scholar 

  67. A. P. Balachandran, A. Daughton, Z.-C. Gu, G. Marmo, R. D. Sorkin, and A. M. Srivastava. A topological spin-statistics theorem or a use of the antiparticle. Mod. Phys. Lett., A5 (20): 1575–1585, 1990.

    MathSciNet  ADS  Google Scholar 

  68. A. P. Balachandran, R. D. Sorkin, W. D. McGlinn, L. O’Raifeartaigh, and S. Sen. The spin-statistics connection from homology groups of configuration space and an anyon Wess-Zumino term. Int. J. Mod. Phys., A7 (27): 6887–6906, 1992.

    MathSciNet  ADS  Google Scholar 

  69. J. Fröhlich and P.-A. Marchetti. Spin-statistics theorem and scattering in planar quantum field theories with braid statistics. Nucl. Phys., B356 (3): 533–573, 1991.

    Article  ADS  Google Scholar 

  70. J. Fröhlich, F. Gabbiani, and P.-A. Marchetti. Braid statistics in three-dimensional local quantum theory. In H.-C. Lee, ed., Physics, Geometry. and Topology,(Banff, 1989), volume 238 of NATO ASI, 1990. Plenum Press, New York, pages 15–79.

    Google Scholar 

  71. H.-K. Lo and J. Preskill. Non-Abelian vortices and non-Abelian statistics. Phys. Rev., D48 (10): 4821–4834, 1993.

    MathSciNet  ADS  Google Scholar 

  72. M. G. Alford, J. March-Russell, and F. Wilczek. Discrete quantum hair on black holes and the non-Abelian Aharonov-Bohm effect. Nucl. Phys.,B337 (3): 695–708, 1990.

    Article  ADS  Google Scholar 

  73. B. A. Ovrut. Isotropy subgroups of SO(3) and Higgs potentials. J. Math. Phys.,19 (2): 418–425, 1978.

    Article  MathSciNet  ADS  Google Scholar 

  74. H.-R. Trebin. The topology of nonuniform media in condensed matter physics. Adv. Phys.,31 (3): 195–254, 1982.

    Article  MathSciNet  ADS  Google Scholar 

  75. V. Poénaru and G. Toulouse. The crossing of defects in ordered media and the topology of 3-manifolds. J. Phys., 38 (8): 887–895, 1977.

    Article  Google Scholar 

  76. F. A. Bais and R. Laterveer. Exact regular ZN monopole solutions in gauge theories with nonadjoint Higgs representations. Nucl. Phys., B307 (3): 487–511, 1988.

    Article  MathSciNet  ADS  Google Scholar 

  77. M. Bucher. The Aharonov-Bohm effect and exotic statistics for non-Abelian vortices. Nucl. Phys., B350 (1–2): 163–178, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  78. M. G. Alford, S. Coleman, and J. March-Russell.Disentangling non-Abelian discrete quantum hair Nucl. Phys., B351 (3): 735–748, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  79. K.-M. Lee. Vortices on higher genus surfaces. Phys. Rev.,D49 (4): 2030–2040,1994.

    ADS  Google Scholar 

  80. M. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F. Wilczek. Interactions and excitations of non-Abelian vortices. Phys. Rev. Lett., 64 (14): 1623–1635, 1990; M. G. Alford, K. Benson, S. Coleman, J. March-Russell, and F. Wilczek. Zero modes of non-Abelian vortices. Nucl. Phys.,B349 (2): 414–438, 1991.

    Google Scholar 

  81. L. Alvarez-Gaumé, C. Gomez, and G. Sierra. Hidden quantum symmetries in rational conformal field theories. Nucl. Phys., B319 (1): 155–186, 1989.

    Article  ADS  Google Scholar 

  82. L. Alvarez-Gaumé, C. Gomez, and G. Sierra. Duality and quantum groups. Nucl. Phys., B330 (2–3): 347–398, 1990.

    Article  ADS  Google Scholar 

  83. E. Witten. Quantum field theory and the Jones polynomials. Commun. Math. Phys.,121 (3): 351–399, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  84. V. G. Drinfel’d. Quantum groups. In Proceedings of the International Congress of Mathematicians, (Berkeley, 1986), 1987. Amer. Math. Soc., Providence, RI, pages 798–820.

    Google Scholar 

  85. V. G. Drinfel’d. Quasi-Hopf algebras and Knizhnik-Zamolodchikov equations. In Problems of Modern Quantum Field Theory, (Alushta, 1989), 1989. Springer, Berlin, pages 1–13.

    Google Scholar 

  86. S. Shnider and S. Sternberg. Quantum groups. From Coalgebras to Drinfel’d Algebras. A Guided Tour, volume 2 of Graduate Texts in Mathematical Physics. International Press, Cambridge, MA, 1993.

    Google Scholar 

  87. R. Dijkgraaf, V. Pasquier, and P. Roche. Quasi Hopf algebras, group cohomology and orbifold models. In Recent Advances in Field Theory, (Annecy-le-Vieux, 1990), volume 18B of Nuclear Phys. B. Proc. Suppl., 1991. North-Holland, Amsterdam, pages 60–72.

    Google Scholar 

  88. R. Dijkgraaf, C. Vafa, E. Verlinde, and H. Verlinde. The operator algebra of orbifold models. Commun. Math. Phys., 123 (3): 485–526, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  89. R. Dijkgraaf and E. Witten. Topological gauge theories and group cohomology. Commun. Math. Phys., 129 (2): 393–429, 1990.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  90. P. van Driel and M. de Wild Propitius. Truncated braid groups. unpublished, 1990.

    Google Scholar 

  91. E. Verlinde. Fusion rules and modular transformations in 2d conformal field theory. Nucl. Phys., B300 (3): 360–376, 1988.

    Article  MathSciNet  ADS  Google Scholar 

  92. G. Moore and N. Seiberg. Classical and quantum conformal field theory. Commun. Math. Phys.,123 (2): 177–254, 1989.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  93. A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description of physical reality be considered complete? Phys. Rev., 47 (1): 777–780, 1935.

    Article  ADS  MATH  Google Scholar 

  94. L. Carroll. Alice’s Adventures in Wonderland. Macmillan, London, 1865.

    Google Scholar 

  95. E. Verlinde. A note on braid statistics and the non-Abelian Aharonov-Bohm effect. In S. Das et al., eds., Modern Quantum Field Theory, (Bombay, 1990), 1991. World Scientific, River Edge, NJ, pages 450–461.

    Google Scholar 

  96. C. C. Adams. The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots. Freeman, New York, 1994.

    MATH  Google Scholar 

  97. L. H. Kauffman. Knots and Physics. World Scientific, Singapore, 1991.

    MATH  Google Scholar 

  98. M. Peshkin and A. Tonomura. The Aharonov-Bohm Effect, volume 340 of Lecture Notes in Physics. Springer-Verlag, Berlin-New York, 1989.

    Book  Google Scholar 

  99. A. D. Thomas and G. V. Wood. Group Tables, volume 2 of Shiva Mathematics Series. Shiva Publishing Ltd., Nantwich, 1980.

    Google Scholar 

  100. F. A. Bais, A. Morozov, and M. de Wild Propitius. In preparation.

    Google Scholar 

  101. J. March-Russell, J. Preskill, and F. Wilczek. Internal frame dragging and a global analog of the Aharonov-Bohm effect. Phys. Rev. Lett.,68 (17): 2567–2571, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  102. M. V. Khazan. Analog of the Aharonov-Bohm effect in superfluid He3-A. Pis’ma Zh. Eksp. Teor. Fiz., 41 (9): 396–398, 1985; M. V. Khazan. Analog of the Aharonov-Bohm effect in superfluid He3-A. JETP Lett., 41 (9): 486–488, 1985.

    Google Scholar 

  103. A. C. Davis and A. P. Martin. Global string and the Aharonov-Bohm effect. Nucl. Phys., B419: 341–351, 1994.

    Article  ADS  Google Scholar 

  104. S. Deser and R. Jackiw. Classical and quantum scattering on a cone. Commun. Math. Phys., 118 (3): 495–509, 1988.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  105. G. ‘t Hooft. Nonperturbative 2 particle scattering amplitudes in (2 + 1)-dimensional quantum gravity. Commun. Math. Phys., 117 (4): 685–700, 1988.

    Article  ADS  MATH  Google Scholar 

  106. E. Witten. (2 + 1)-dimensional gravity as an exactly soluble system. Nucl. Phys., B311 (1): 46–78, 1988/89.

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Propitius, M.W., Bais, F.A. (1999). Discrete Gauge Theories. In: Semenoff, G., Vinet, L. (eds) Particles and Fields. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1410-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1410-6_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7133-8

  • Online ISBN: 978-1-4612-1410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics