Skip to main content

Localization, Equivariant Cohomology, and Integration Formulas

  • Chapter
Particles and Fields

Part of the book series: CRM Series in Mathematical Physics ((CRM))

Abstract

In this chapter we review the derivation of the DuistermaatHeckman integration formula and its path integral generalizations, and explain the underlying formalism of equivariant cohomology. We evaluate the quantum mechanical partition function for a general integrable model by localizing onto an ordinary integral of an equivariant characteristic class. We also describe the Mathai-Quillen formalism and its equivariant loop space extensions. We show how certain standard relations in classical Morse theory can be derived from this formalism, and generalize these relations to the infinite-dimensional and equivariant context. We also explain how Poincaré supersymmetric quantum field theories can be formulated using equivariant cohomology in the loop space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. A. Semenov-Tjan-Šhanskiĭ. A certain property of the Kirillov integral. In Differential Geometry, Lie Group, and Mechanics, volume 37 of Mat. Ind. Steklov (LOMI), pages 53–65, 1973. Russian; M. A. Semenov-Tjan-Šhanskiĭ. Harmonic analysis on Riemannian symmetric spaces of negative curvature, and scattering theory. Izv. Akad. Nauk., 40 (3): 562–592, 1976.

    Google Scholar 

  2. J. J. Duistermaat and G. Heckman. On the variation in the cohomology of the symplectic form of the reduced phase space. Invent. Math., 69 (2): 259–268, 1982; J. J. Duistermaat and G. Heckman Addendum to “On the variation in the cohomology of the symplectic form of the reduced phase space.” Invent. Math., 72 (1): 153–158, 1983.

    Google Scholar 

  3. N. Berline and M. Vergne. Zéros d’un champ de vecteurs et classes caractéristiques équivariantes. Duke Math. J., 50 (2): 539–549, 1983. French; N. Berline and M. Vergne. The equivariant index and Kirillov’s character formula. Amer. J. Math., 107 (5): 1159–1190, 1985.

    Google Scholar 

  4. M. F. Atiyah and R. Bott. The moment map and equivariant cohomology. Topology, 23 (1): 1–28, 1984; M. F. Atiyah and R. Bott. A Lefschetz fixed point formula for elliptic complexes. I. Ann. Math., 86: 374–407, 1967; M. F. Atiyah and R. Bott. A Lefschetz fixed point formula for elliptic complexes. II. Ann. Math., 88: 451–491, 1968; M. Atiyah and I. Singer. The index of elliptic operators III. Ann. Math., 87: 546–604, 1968; M. Atiyah and I. Singer. The index of elliptic operators IV. Ann. Math., 93: 119–138, 1971.

    Google Scholar 

  5. J.-M. Bismut. Index theorem and equivariant cohomology on the loop space. Commun. Math. Phys., 98 (2): 213–237, 1985; J.-M. Bismut. Localization formulas, superconnections, and the index theorem for families. Commun. Math. Phys., 103 (1): 127–166, 1986; J.-M. Bis-mut. The infinitesimal Lefschetz formulas: A heat equation proof. J. Funct. Anal., 62 (3): 435–457, 1985.

    Google Scholar 

  6. N. Berline, E. Getzler, and M. Vergne. Heat Kernels and Dirac Operators, volume 298 of Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1992.

    Book  Google Scholar 

  7. M. F. Atiyah. Circular symmetry and stationary-phase approximation. In Colloquim in Honor of Laurent Schwartz. I, volume 131 of Astérisque, pages 43–59, 1985.

    Google Scholar 

  8. M. Blau, E. Keski-Vakkuri, and A. J. Niemi. Path integrals and geometry of trajectories. Phys. Lett., B246 (1–2): 92–98, 1990; A. J. Niemi and P. Pasanen. Orbit geometry, group representations and topological quantum field theories. Phys. Lett., B253 (3–4): 349–356, 1991; E. Keski-Vakkuri, A. J. Niemi, G. Semenoff, and O. Tirkkonen. Topological quantum theories and integrable models. Phys. Rev., D44 (12): 3899–3905, 1991.

    Google Scholar 

  9. A. J. Niemi and O. Tirkkonen. Cohomological partition functions for a class of bosonic theories. Phys. Lett., B293 (3–4): 339–343, 1992.

    MathSciNet  ADS  Google Scholar 

  10. H. M. Dykstra, J. D. Lykken, and E. J. Raiten. Exact path integrals by equivariant localization. Phys. Lett., B302 (2–3): 223–229, 1993.

    MathSciNet  ADS  Google Scholar 

  11. E. Witten. Two-dimensional gauge theories revisited. J. Geom. Phys., 9 (4): 303–368, 1992.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. A. J. Niemi and O. Tirkkonen. On exact evaluation of path integrals. Ann. Phys., 235 (2): 318–349, 1994; A. J. Niemi and K. Palo. On quantum integrability and the Lefschetz number. Mod. Phys. Lett., A8 (24): 2311–2321, 1993.

    Google Scholar 

  13. V. I. Arnold. Mathematical Methods of Classical Mechanics, volume 60 of Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1978.

    Google Scholar 

  14. J. Kalkman. BRST model for equivariant cohomology and representatives for the equivariant Thorn class. Commun. Math. Phys., 153 (3): 447–463, 1993; J. Kalkuran. BRST model applied to symplectic geomerty. hep-th/9308132.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. J. Niemi and O. Tirkkonen. Equivariance, BRST symmetry, and superspace. J. Math. Phys., 35 (12): 6418–6433, 1994.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Eguchi, P. Gilkey, and A. Hanson. Gravitation, gauge theories and differential geometry. Phys. Rep.,66 (6): 213–393, 1980.

    Article  MathSciNet  ADS  Google Scholar 

  17. A. Hietamäki, A. Yu. Morozov, A. J. Niemi, and K. Palo. Geometry of \(n = \tfrac{1}{2}\) supersymmetry and the Atiyah-Singer index theorem. Phys. Lett., B263 (3–4): 417–424, 1991; A. Yu. Morozov, A. J. Niemi, and K. Palo. Supersymmetry and loop space geometry. Phys. Lett.,B271 (3–4): 365–371, 1991.

    Google Scholar 

  18. D. Birmingham, M. Blau, M. Rakowski, and G. Thompson. Topological field theory. Phys. Rep., 209 (4–5): 129–340, 1991.

    Article  MathSciNet  ADS  Google Scholar 

  19. V. Mathai and D. Quillen. Superconnections, Thorn classes, and equivariant differential forms. Topology,25 (1): 85–110, 1986; M. Blau. The Mathai-Quillen formalism and topological field theory. J. Geom. Phys., 11 (4–5): 95–127, 1993; S. Cordes, G. Moore, and S Ramgoolan. Lectures on 2D Yang-Mills theory, equivariant cohomology and topological field theory. hep-th/9411210.

    Google Scholar 

  20. A. J. Niemi and K. Palo. Equivariant Morse theory and quantum integrability. hep-th/9406068; A. J. Niemi and K. Palo. On the characterization of classical dynamical systems using supersymmetric nonlinear a-models. hep-th/9412023.

    Google Scholar 

  21. J. Milnor. Morse Theory, volume 51 of Ann. Math. Studies. Princeton University Press, Princeton, NJ, 1963.

    Google Scholar 

  22. K. Palo. Symplectic geometry of supersymmetry and nonlinear sigma model. Phys. Lett.,B321 (1–2): 61–65, 1994.

    MathSciNet  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Niemi, A.J. (1999). Localization, Equivariant Cohomology, and Integration Formulas. In: Semenoff, G., Vinet, L. (eds) Particles and Fields. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-1410-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1410-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7133-8

  • Online ISBN: 978-1-4612-1410-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics