Skip to main content

Abstract

Although considerable progress has been made in technology for converting lignocellulosic biomass into ethanol, substantial opportunities still exist to reduce production costs. In biomass pretreatment, reducing milling power is a technological improvement that will substantially lower production costs for ethanol. Improving sugar yield from hemicellulose hydrolysis would also reduce ethanol production costs. Thus, it would be desirable to test innovative pretreatment conditions to improve the economics by reducing electrical power of the milling stage and by optimizing pretreatment recovery of hemicellulose, as well as to enhance cellulose hydrolysis. The objective of this study was to evaluate the effect of chip size (2–5, 5–8, and 8–12 mm) on steam-explosion pretreatment (190 and 210°C, 4 and 8 min) of softwood (Pinus pinaster).

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lynd, L. R., Elander, R. T., and Wyman, C. E. (1996), Appl. Biochem. Biotechnol. 57/58, 741–761.

    Article  CAS  Google Scholar 

  2. Antonopoulos, A. A. and Grohmann, K. (1994), Appl. Biochem. Biotechnol. 45/46, 935–952.

    Article  Google Scholar 

  3. Bordiert, A. and Buchholz, K. (1987), Proc. Biochem. (vnDec), 173–180.

    Google Scholar 

  4. Saddler, J. N. and Brownell, H. H. (1982), in Proceedings of the International Symposium on Ethanol from Biomass, Duckworth, H. E. and Thompson, E. A., eds., The Royal Society of Canada, Winnipeg, pp. 206–210.

    Google Scholar 

  5. Brownell, H. H. and Saddler J. N. (1984), Biotechnol. Bioeng. Symp. 14, 55–68.

    CAS  Google Scholar 

  6. Clark, T. A. and Mackie, K. L. (1987), J. Wood Chem. Technol. 7(3), 373–403.

    Article  CAS  Google Scholar 

  7. Brownell, H. H., Yu, E. K. C., and Saddler, J. N. (1986), Biotechnol. Bioeng. 28, 729–801.

    Article  Google Scholar 

  8. Carrasco, J. E., Martínez, J. M., Negro, M. J., Manero, J., Mazón, P., Sáez, F., and Martín, C. (1989), in Biomass for Energy and Industry, 5th Conference, vol. 2, Grassi, G., Gosse, G., and Dos Santos, G., eds., Elsevier Applied Science, Essex, England, pp. 38–44.

    Google Scholar 

  9. Wise, L. E., Murphy, M., and Addieco, A. A. (1946), Paper Trade J. 122(2), 35–42.

    CAS  Google Scholar 

  10. ASTM-D 1107-84 (1995), in Annual Book of ASTM Standards, vol. 04.10, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  11. ASTM-D 1110-84 (1995), in Annual Book of ASTM Standards, vol. 04.10, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  12. ASTM-D-1106-84 (1995), in Annual Book of ASTM Standards, vol. 04.10, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  13. Puls, J., Poutanen, K., Körner, H. V., and Viikari, L. (1985), Appl. Microbiol. Biotechnol. 22, 416–423.

    Article  CAS  Google Scholar 

  14. Cadoche, L. and López, G. D. (1989), Biol. Wastes 30, 153–157.

    Article  CAS  Google Scholar 

  15. Grethlein, H. E. and Converse, A. O. (1991), Bioresour. Technol. 36, 77–82.

    Article  CAS  Google Scholar 

  16. Ramos, L. P., Breuil, C., and Saddler, J. N. (1992), Appl. Biochem. Biotechnol. 34/35, 37–48.

    Article  Google Scholar 

  17. Clark, T. A., Mackie, K. L., Dare, P. H., and McDonald, A. G. (1989), J. Wood Chem. Technol. 9, 135–166.

    Article  CAS  Google Scholar 

  18. Mackie, K. L., Brownell, H. H., West, K. L., and Saddler, J. N. (1985), J. Wood Chem. Technol. 5, 405–425.

    Article  CAS  Google Scholar 

  19. Heitz, M., Capek-Menard, E., Koeberle, P. G., Gagne, E., Chornet, E., Overend, R. P., Taylor, J. D., and Yu, E. (1991), Bioresour. Technol. 35, 23–32.

    Article  CAS  Google Scholar 

  20. Saddler, J. N., Brownell, H. H., Clermont, L. P., and Levitin, N. L. (1982), Biotechnol. Bioeng. 24, 1389–1402.

    Article  CAS  Google Scholar 

  21. Tanahashi, M., Takada, S., Aoki, T., Goto, T., Higuchi, T., and Hanai, S. (1983), Wood Res. 69, 36–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ballesteros, I., Oliva, J.M., Navarro, A.A., González, A., Carrasco, J., Ballesteros, M. (2000). Effect of Chip Size on Steam Explosion Pretreatment of Softwood. In: Finkelstein, M., Davison, B.H. (eds) Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1392-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1392-5_7

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7128-4

  • Online ISBN: 978-1-4612-1392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics