Production of Lactic Acid from Pulp Mill Solid Waste and Xylose Using Lactobacillus delbrueckii (NRRL B445)

  • Susanna Thomas
Chapter
Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

Using the simultaneous saccharification and fermentation (SSF) technique, pulp mill solid waste cellulose was converted into glucose using cellulase enzyme and glucose into lactic acid using NRRL B445. SSF experiments were conducted at various pH levels, temperatures, and nutrient concentrations, and the lactic acid yield ranged from 86 to 97%. The depletion of xylose in SSF was further investigated by inoculating NRRL B445 into a xylose-only medium. On prolonged incubation, depletion of xylose with lactic acid production was observed. An experimental procedure with a nonglucose medium was developed to eliminate the lag phase. From xylose fermentation, Lactobacillus delbrueckii yielded 88–92% lactic acid and 2–12% acetic acid.

Index Entries

Xylose pulp mill solid waste lactic acid Lactobacillus fermentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lipinsky, E. S. and Sinclair, E. G. (1986), Chem. Eng. Prog. 82, 26–32.Google Scholar
  2. 2.
    Rogosa, M. (1974), in Bergey’s Manual of Determinative Bacteriology, 8th ed., Williams & Wilkins, Baltimore, p. 585.Google Scholar
  3. 3.
    Kandier, O. and Weiss, N. (1984), Bergey’s Manual of Systemic Bacteriology, 1st ed., vol. 2, Williams & Wilkins, Baltimore.Google Scholar
  4. 4.
    Kaufman, E. N., Cooper, S. P., Budner, M. K., and Richardson, G. R. (1996), Appl. Biochem. Biotechnol. 57/58, 503–515.CrossRefGoogle Scholar
  5. 5.
    Xavier, A. M. B., Goncalves, L. M. D., Moreira, J. L., and Corrondo, M. J. T. (1995), Biotechnol. Bioeng. 45, 320.CrossRefGoogle Scholar
  6. 6.
    Tyree, R. W., Clausen, E. C., and Gaddy, J. L. (1990), Biotechnol. Lett. 12(1), 51–56.CrossRefGoogle Scholar
  7. 7.
    McCaskey, T. A., Zhou, S. D., Britt, S. N., and Strickland, R. (1994), Appl. Biochem. Biotechnol. 45/46, 555–568.CrossRefGoogle Scholar
  8. 8.
    Ishizaki, A., Ueda, T., Tanaka, K., and Stansbury, P. F. (1992), Biotechnol. Lett. 14(7), 599–604.CrossRefGoogle Scholar
  9. 9.
    Picataggio, S. K., Zhang, M., Franden, M. N., McMillan, J. D., and Finkelstein, M. (1998), U.S. patent no. 5798237, August 25.Google Scholar
  10. 10.
    Ehrman, T. (1992), Determination of Total Solids/Moisture in Biomass, Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division, no. 001, Oak Ridge, TN.Google Scholar
  11. 11.
    Ehrman, T. (1992), Two Stage Sulfuric Acid Hydrolysis for Determination of Carbohydrates, Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division, no. 002, Oak Ridge, TN.Google Scholar
  12. 12.
    Ehrman, T. (1992), Determination of Klason Lignin in Biomass, Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division, no. 003, Oak Ridge, TN.Google Scholar
  13. 13.
    Magill, K. (1992), Determination of Acid Soluble Lignin in Biomass, Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division, no. 004, Oak Ridge, TN.Google Scholar
  14. 14.
    Ehrman, T. (1992), Determination of Ash in Biomass, Chemical Analysis and Standard Procedure, NREL Alternative Fuels Division, no. 005, Oak Ridge, TN.Google Scholar
  15. 15.
    Borch, E., Berg, H., and Holst, O. (1991), J. Appl. Bacteriol. 71, 265–269.CrossRefGoogle Scholar
  16. 16.
    De Bruyn, I. H., Holzapfel, W. H., Visser, L., and Louw, A. I. (1988), J. Gen. Microbiol. 134, 2103–2109.Google Scholar
  17. 17.
    De Vries, W. K., Willemina, M. C., Van Der Beek, E. G., and Stouthamer, A. H. (1970), J. Gen. Microbiol. 63, 333.Google Scholar
  18. 18.
    Thomas, T. D., Elwood, D. C., and Longyear, V. M. C. (1979), J. Bacteriol. 138(1), 109–117.Google Scholar
  19. 19.
    Tseng, C. P. and Montville, T. J. (1993), Biotechnol. Prog. 9, 113.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Susanna Thomas
    • 1
  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA

Personalised recommendations