Nuclear Magnetic Resonance Studies of Acetic Acid Inhibition of Rec Zymomonas mobilis ZM4(pZB5)

  • In S. Kim
  • Kevin D. Barrow
  • Peter L. Rogers
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


The fermentation characteristics and effects of lignocellulosic toxic compounds on recombinant Zymomonas mobilis ZM4 (pZB5), which is capable of converting both glucose and xylose to ethanol, and its parental strain, ZM4, were characterized using 13C and 31P nuclear magnetic resonance (NMR) in vivo. From the 31P NMR data, the levels of nucleoside triphosphates (NTP) of ZM(pZB5) using xylose were lower than those of glucose. This can be related to the intrinsically slower assimilation and/or metabolism of xylose compared to glucose and is evidence of a less energized state of ZM4 (pZB5) cells during xylose fermentation. Acetic acid was shown to be strongly inhibitory to ZM4 (pZB5) on xylose medium, with xylose utilization being completely inhibited at pH 5.0 or lower in the presence of 10.9 g/L of sodium acetate. From the 31P NMR results, the addition of sodium acetate caused decreased NTP and sugar phosphates, together with acidification of the cytoplasm. Intracellular deenergization and acidification appear to be the major mechanisms by which acetic acid exerts its toxic effects on this recombinant strain.

Index Entries

Recombinant Zymomonas xylose fermentation 13C nuclear magnetic resonance 31P nuclear magnetic resonance acetic acid inhibition 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rogers, P. L., Lee, K. J., and Tribe, D. E. (1979), Biotechnol. Lett. 1, 165–170.CrossRefGoogle Scholar
  2. 2.
    Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.Google Scholar
  3. 3.
    Doelle, H. W., Kirk, L., Crittendon, R., Toh, H., and Doelle, M. (1983), Crit. Rev. Biotechnol. 13, 57–98.CrossRefGoogle Scholar
  4. 4.
    Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–219.CrossRefGoogle Scholar
  5. 5.
    Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. (1995), Science 67, 240–243.CrossRefGoogle Scholar
  6. 6.
    Ranatunga, T. D., Jervis, J., Helm, R. F., McMillan, J. D., and Hatzis, C. (1997), Appl. Biochem. Biotechnol. 67, 185–198.CrossRefGoogle Scholar
  7. 7.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39-40, 301–322.CrossRefGoogle Scholar
  8. 8.
    Lohmeier-Vogel, E. M., McIntyre, D. D., Vogel, H. J. (1990), in Physiology of Immobilized Cells, de Bont, J. A. M., Visser, J., Mattiasson, B., and Tramper, J., eds., Elsevier Science, Amsterdam, pp. 661–676.Google Scholar
  9. 9.
    Taylor, K. B., Beck, M. J., Huang, D. H., and Sakai, T. T. (1990), J. Ind. Microbiol. 6, 29–41.CrossRefGoogle Scholar
  10. 10.
    Schoberth, S. M. and de Graaf A. A. (1993), Anal. Biochem. 210, 123–128.CrossRefGoogle Scholar
  11. 11.
    Lohmeier-Vogel, E., Hahn-Hägerdal, B., and Vogel, H. J. (1995), Appl. Environ. Microbiol. 61, 1414–1419.Google Scholar
  12. 12.
    Lundberg, P., Harmsen, E., Ho, C., and Vogel, H. J. (1990), Anal. Biochem. 191, 193–222.CrossRefGoogle Scholar
  13. 13.
    Barrow, K. D., Collins, J. G., Norton, R. S., Rogers, P. L., and Smith, G. M. (1984), J. Biol. Chem. 259, 5711–5716.Google Scholar
  14. 14.
    Loureiro-Dias, M. and Santos, H. (1990), Arch. Microbiol. 153, 384–391.CrossRefGoogle Scholar
  15. 15.
    Strohhäcker, J., de Graaf, A. A., Schoberth, S. M., Wittig, R. M., and Sahm, H. (1993), Arch. Microbiol. 159, 484–490.CrossRefGoogle Scholar
  16. 16.
    Ugurbil, K., Shulman, R. G., and Brown, T. R. (1979), in Biological Applications of Magnetic Resonance, Shulman, R. G., ed., Academic, New York, pp. 537–589.Google Scholar
  17. 17.
    Maleszka, R. and Schneider, H. (1982), Appl. Environ. Microbiol. 44, 909–912.Google Scholar
  18. 18.
    Moyer, J. D. and Henderson, J. F. (1985), CRC Crit. Rev. Biochem. 19, 45–62.CrossRefGoogle Scholar
  19. 19.
    Joachimsthal, E., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77-79, 147–157.CrossRefGoogle Scholar
  20. 20.
    Delgenes, J. P., Moletta, R., and Navarro, J. M. (1996), Enzyme Microbial Technol. 19, 220–225.CrossRefGoogle Scholar
  21. 21.
    Tran, A. V. and Chambers, R. P. (1985), Biotechnol. Lett. 7, 841–846.CrossRefGoogle Scholar
  22. 22.
    Joachimsthal, E., Haggett, K. D., Jang, J.-H., and Rogers, P. L. (1998), Biotechnol. Lett. 20, 137–142.CrossRefGoogle Scholar
  23. 23.
    Lawford, H. G. and Rousseau, J. D. (1993), Appl. Biochem. Biotechnol. 39-40, 687–699.CrossRefGoogle Scholar
  24. 24.
    Lawford, H. G. and Rousseau, J. D. (1994), Appl. Biochem. Biotechnol. 45-46, 437–448.CrossRefGoogle Scholar
  25. 25.
    Mitchell, P. (1973), J. Bioenerget. 4, 63–91.CrossRefGoogle Scholar
  26. 26.
    Pampulha, M. E. and Lauriero, V. (1989), Biotechnol. Lett. 11, 269–274.CrossRefGoogle Scholar
  27. 27.
    Lohmeier-Vogel, E. M., Sopher, C. R., and Lee, H. (1998), J. Ind. Microbiol. Biotechnol. 20, 75–81.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • In S. Kim
    • 1
  • Kevin D. Barrow
    • 2
  • Peter L. Rogers
    • 1
  1. 1.Department of BiotechnologyUniversity of New South WalesSydney, NSWAustralia
  2. 2.School of Biochemistry and Molecular GeneticsUniversity of New South WalesSydney, NSWAustralia

Personalised recommendations