Skip to main content

Comparative Energetics of Glucose and Xylose Metabolism in Recombinant Zymomonas mobilis

  • Chapter
Twenty-First Symposium on Biotechnology for Fuels and Chemicals

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

  • 1353 Accesses

Abstract

Recombinant Zymomonas mobilis CP4:pZB5 was grown with pH control in batch and continuous modes with either glucose or xylose as the sole carbon and energy source. In batch cultures in which the ratio of the final cell mass concentration to the amount of sugar in the medium was constant (i.e., under conditions that promote “coupled growth”), maximum specific rates of glucose and xylose consumption were 8.5 and 2.1 g/(g of cell.h), respectively; maximum specific rates of ethanol production for glucose and xylose were 4.1 and 1.0 g/(g of cell.h), respectively; and average growth yields from glucose and xylose were 0.055 and 0.034 g of dry cell mass (DCM)/g of sugar, respectively. The corresponding value of γATp for glucose and xylose was 9.9 and 5.1 g of DCM/mol of ATP, respectively. γATp for the wild-type culture CP4 with glucose was 10.4 g of DCM/mol of ATP. For single substrate chemostat cultures in which the growth rate was varied as the dilution rate (D), the maximum or “true” growth yield (max γ x/s) was calculated from Pirt plots as the inverse of the slope of the best-fit linear regression for the specific sugar utilization rate as a function of D, and the “maintenance coefficient” (m) was determined as the y-axis intercept. For xylose, values of max γ and m were 0.0417 g of DCM/g of xylose (γATp = 6.25) and 0.04 g of xylose/(g of cell.h), respectively. However, with glucose there was an observed deviation from linearity, and the data in the Pirt plot was best fit with a second-order polynomial in D. At D > 0.1/h, γATP = 8.71 and m = 2.05 g of glu/(g of cell.h) whereas at D < 0.1/h, γ ATP, = 4.9 g of DCM/mol of ATP and m = 0.04 g of glu / (g of cell.h). This observation provides evidence to question the validity of the unstructured growth model and the assumption that Pirt’s maintenance coefficient is a constant that is independent of the growth rate. Collectively, these observations with individual sugars and the values assigned to various growth and fermentation parameters will be useful in the development of models to predict the behavior of rec Zm in mixed substrate fermentations of the type associated with biomass-to-ethanol processes

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Diaz-Ricci, J. C., Tsu, M., and Bailey, J. E. (1992), Biotechnol. Bioeng. 39, 59.

    Article  CAS  Google Scholar 

  2. Hill, P. W., Klapatch, T. R., and Lynd, L. R. (1993), Biotechnol. Bioeng. 42, 873–883.

    Article  CAS  Google Scholar 

  3. Kompala, D. S., Ramkrishna, D., Jansen, N. B., and Tsao, G. T. (1986), Biotechnol. Bioeng. 28, 1044–1055.

    Article  CAS  Google Scholar 

  4. Lawford, H. G. and Rousseau, J. D. (1995), Appl. Biochem. Biotechnol. 51/52, 179–195.

    Article  CAS  Google Scholar 

  5. Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., and Picataggio, S. K. (1995), Science 267, 240–243.

    Article  CAS  Google Scholar 

  6. Picataggio, S. K., Zhang, M., Eddy, C. K., Deanda, K. A., and Finkelstein, M. (1996), US Patent 5, 514, 583.

    Google Scholar 

  7. Lawford, H. G., Rousseau, J. D., and McMillan, J. D. (1997), Appl. Biochem. Biotechnol. 63-65, 269–286.

    Article  CAS  Google Scholar 

  8. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1998), Appl. Biochem. Biotechnol. 70-72, 353–368.

    Article  CAS  Google Scholar 

  9. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70-72, 161–172.

    Article  CAS  Google Scholar 

  10. Lawford, H. G. and Rousseau, J. D. (1999), Appl. Biochem. Biotechnol. 77-79, 235–250.

    Article  CAS  Google Scholar 

  11. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (1999), Appl. Biochem. Biotechnol. 77-79, 191–204.

    Article  CAS  Google Scholar 

  12. Thauer, R. K., Jungermann, K., and Decker, K. (1977), Bacteriol. Rev. 41, 100–180.

    CAS  Google Scholar 

  13. Stouthamer, A. H. (1979), in International Reviews of Biochemistry—Microbial Biochemistry, vol. 21, Quayle, J. R., ed., University Park Press, Baltimore, pp. 1–47.

    Google Scholar 

  14. Batley, E. H. (1987), in Energetics of Microbial Growth, John Wiley & Sons, New York.

    Google Scholar 

  15. Pirt, J. S. (1975), in Principles of Microbe and Cell Cultivation, John Wiley & Sons, New York.

    Google Scholar 

  16. Bauchop, T. and Elsden, S. R. (1960), J. Gen. Microbiol. 23, 457–469.

    CAS  Google Scholar 

  17. Stouthamer, A. H. (1969), in Methods in Microbiology, vol. 1, Norris, J. R. and Ribbons, D. W., eds., Academic, New York, pp. 629–663.

    Google Scholar 

  18. Stouthamer, A. H. (1977), in Microbial Energetics, 27th Symposium of the Society of General Microbiology, Haddock, B. A. and Hamilton, W. A., eds., Cambridge University Press, London, pp. 285–315.

    Google Scholar 

  19. Stouthamer, A. H. (1976), in Yield Studies in Microorganisms, Meadowfield Press, Dewbury, UK.

    Google Scholar 

  20. Roseman, S. (1969), J. Gen. Physiol. 54, 138–184.

    Article  CAS  Google Scholar 

  21. Lawford, H. G. and Ruggiero, A. (1990), Biotechnol. Appl. Biochem. 12, 206–211.

    CAS  Google Scholar 

  22. Stevnsborg, N. and Lawford, H. G. (1986), Appl. Microbiol. Biotechnol. 25, 106–115.

    CAS  Google Scholar 

  23. Nipkow, A., Sonnleiter, B., and Fiechter, A. (1985), Appl. Microbiol. Biotechnol. 21, 287–291.

    Article  CAS  Google Scholar 

  24. Lawford, H. G. and Rousseau, J. D. (1997), Appl. Biochem. Biotechnol. 63-65, 287–304.

    Article  CAS  Google Scholar 

  25. Satyagal, V. N. and Agrawal, P. (1990), Biotechnol. Bioeng. 35, 23–30.

    Article  CAS  Google Scholar 

  26. Joachimsthal, E. L., Haggett, K. D., and Rogers, P. L. (1999), Appl. Biochem. Biotechnol. 77-79, 147–158.

    Article  CAS  Google Scholar 

  27. Rogers, P. L. and Lawford, H. G. (1999), 21st Symposium on Biotechnology for Fuels and Chemicals, Fort Collins, CO, May 2–6, Abstract 2-01.

    Google Scholar 

  28. Horton, R. H., Moran, L. A., Ochs, R. S., Rawn, J. D., and Scrimgeour, K. G. (1996), in Principles of Biochemistry, 2nd ed., Prentice Hall, Upper Saddle River, NY, p. 428.

    Google Scholar 

  29. Lawford, H. G. and Rousseau, J. D. (1998), Appl. Biochem. Biotechnol. 70-72, 173–186.

    Article  CAS  Google Scholar 

  30. Jöbses, I. M. L., Egberts, G. T. C., van Baalen, A., and Roels, J. A. (1985), Biotechnol. Bioeng. 27, 984–995.

    Article  Google Scholar 

  31. Jöbses, I. M. L. and Roels, J. A. (1985), Biotechnol. Bioeng. 28, 554–563.

    Article  Google Scholar 

  32. Feischko, J. and Humphrey, A. (1983), Biotechnol Bioeng. 25, 1655–1660.

    Article  Google Scholar 

  33. Lawford, H. G., Rousseau, J. D., Mohagheghi, A., and McMillan, J. D. (2000), Appl. Biochem. Biotechnol. 84-86, 295–310.

    Article  CAS  Google Scholar 

  34. DiMarco, A. and Romano, A. H. (1985), Appl. Environ. Microbiol. 49, 151–157.

    CAS  Google Scholar 

  35. Parker, C., Barnell, W. O., Snoep, J. L., Ingram, L. O., and Conway, T. (1995), Mol. Microbiol. 15, 795–802.

    Article  CAS  Google Scholar 

  36. Bauchop, T. and Elsden, S. R. (1960), J. Gen. Microbiol. 23, 457–469.

    CAS  Google Scholar 

  37. Beläich, J.-P., Beläich, A., and Simonpietri, P. (1972), J. Gen. Microbiol. 70, 179–185.

    Google Scholar 

  38. Lazdunski, A. and Beläich, J.-P. (1972), J. Gen. Microbiol. 70, 187–197.

    CAS  Google Scholar 

  39. Lavers, B. H., Pang, P., MacKenzie, C. R., Lawford, G. R., and Lawford, H. G. (1982), in Advances in Biotechnology, Proceedings of International Fermentation Symposium, London, Ontario, 1980, Moo-Young, M. and Robinson, W. C., eds., Pergamon, Toronto, Canada.

    Google Scholar 

  40. Lawford, H. G. and Stevnsborg, N. (1986), Biotechnol. Lett. 8, 345–350.

    Article  CAS  Google Scholar 

  41. Lawford, H. G. (1988), Appl. Biochem. Biotechnol. 17, 203–219.

    Article  CAS  Google Scholar 

  42. Rogers, P. L., Lee, K. J., Skotnicki, M. L., and Tribe, D. E. (1982), Adv. Biochem. Eng. 23, 37–84.

    Google Scholar 

  43. Lee, K. J., Tribe, D. E., and Rogers, P. L. (1979), Biotechnol. Lett. 1, 421–426.

    Article  CAS  Google Scholar 

  44. Olivera, E. G., Morais, J. O., and Periera, N. (1992), Biotechnol. Lett. 14, 1081–1084.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lawford, H.G., Rousseau, J.D. (2000). Comparative Energetics of Glucose and Xylose Metabolism in Recombinant Zymomonas mobilis . In: Finkelstein, M., Davison, B.H. (eds) Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1392-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1392-5_21

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7128-4

  • Online ISBN: 978-1-4612-1392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics