Skip to main content

Part of the book series: Applied Biochemistry and Biotechnology ((ABAB))

Abstract

Poplar wood was treated with peracetic acid, KOH, and ball milling to produce 147 model lignocelluloses with a broad spectrum of lignin contents, acetyl contents, and crystallinity indices (CrIs), respectively. An empirical model was identified that describes the roles of these three properties in enzymatic hydrolysis. Lignin content and CrI have the greatest impact on biomass digestibility, whereas acetyl content has a minor impact. The digestibility of several lime-treated biomass samples agreed with the empirical model. Lime treatment removes all acetyl groups and a moderate amount of lignin and increases CrI slightly; lignin removal is the dominant benefit from lime treatment.

Author to whom all correspondence and reprint requests should be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Klyosov, A. A. (1986), Appl. Biochem. Biotechnol. 12, 249–300.

    Article  Google Scholar 

  2. Holtzapple, M. T., Ross, M. K., Chang, N.-S., Chang, V. S., Adelson, S. K., and Brazel, C. (1997), in Fuels and Chemicals from Biomass, Saha, B. C. and Woodward, J., eds., American Chemical Society, Washington, DC, pp. 130–142.

    Chapter  Google Scholar 

  3. Cowling, E. B. (1975), Biotechnol. Bioeng. Symp. 5, 163–181.

    CAS  Google Scholar 

  4. Dunlap, C. E., Thomson, J., and Chiang, L. C. (1976), AIChE Symp. Ser. 158 72, 58–63.

    CAS  Google Scholar 

  5. Wilkinson, J. M. and Santillana, R. G. (1978), Anim. Feed Sci. Technol. 3, 117–132.

    Article  CAS  Google Scholar 

  6. Ibrahim, M. N. M. and Pearce, G. R. (1983), Agric. Wastes 5, 135–156.

    Article  CAS  Google Scholar 

  7. Lin, K. W., Ladisch, M. R., Voloch, M., Patterson, J. A., and Noller, C. H. (1985), Biotechnol. Bioeng. 27, 1427–1433.

    Article  CAS  Google Scholar 

  8. Weimer, P. J., Chou, Y.-C. T., Weston, W. M., and Chase, D. B. (1986), Biotechnol. Bioeng. Symp. 17, 5–18.

    CAS  Google Scholar 

  9. Rolz, C., de Arriola, M. C., Valladares, J., and de Cabrera, S. (1987), Process Biochem. 22, 17–23.

    CAS  Google Scholar 

  10. Grethlein, H. E. and Converse, A. O. (1991), Bioresource Technol. 36, 77–82.

    Article  CAS  Google Scholar 

  11. Norkrans, B. (1950), Physiol. Plant 3, 75–87.

    Article  Google Scholar 

  12. Walseth, C. S. (1952), Tappi 35(5), 233–238.

    CAS  Google Scholar 

  13. Sullivan, J. T. (1959), J. Anim. Sci. 18, 1292–1298.

    CAS  Google Scholar 

  14. Van Soest, P. J. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 262–278.

    Chapter  Google Scholar 

  15. Stone, J. E., Scallan, A. M., Donefer, E., and Ahlgren, E. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 219–241.

    Chapter  Google Scholar 

  16. Feist, W. C., Baker, A. J., and Tarkow, H. (1970), J. Anim. Sci. 30, 832–835.

    CAS  Google Scholar 

  17. Baker, A. J. (1973), J. Anim. Sci. 36(4), 768–771.

    CAS  Google Scholar 

  18. Anderson, D. C. and Ralston, A. T. (1973), J. Anim. Sci. 37(1), 148–152.

    CAS  Google Scholar 

  19. Caulfield, D. F. and Moore, W. E. (1974), Wood Sci. 6(4), 375–379.

    CAS  Google Scholar 

  20. Han, Y. W., Lee, J. S., and Anderson, A. W. (1975), J. Agric. Food Chem. 23, 928–931.

    Article  CAS  Google Scholar 

  21. Sasaki, T., Tanaka, T., Nanbu, N., Sato, Y., and Kainuma, K. (1979), Biotechnol. Bioeng. 21, 1031–1042.

    Article  CAS  Google Scholar 

  22. Fan, L. T., Lee, Y.-H., and Breadmore, D. H. (1980), Biotechnol. Bioeng. 22, 177–199.

    Article  CAS  Google Scholar 

  23. Knappert, D., Grethlein, H., and Converse, A. (1980), Biotechnol. Bioeng. 22, 1449–1463.

    Article  CAS  Google Scholar 

  24. Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1981), Biotechnol. Bioeng. Symp. 11, 29–45.

    CAS  Google Scholar 

  25. Gharpuray, M. M., Lee, Y.-H., and Fan, L. T. (1983), Biotechnol. Bioeng. 25, 157–172.

    Article  CAS  Google Scholar 

  26. Han, Y. W., Catalano, E. A., and Ciegler, A. (1983), J. Agric. Food Chem. 31, 34–38.

    Article  CAS  Google Scholar 

  27. Puri, V. P. (1984), Biotechnol. Bioeng. 26, 1219–1222.

    Article  CAS  Google Scholar 

  28. Grethlein, H. E. (1985), Bio/Technol. 3, 155–160.

    Article  CAS  Google Scholar 

  29. Bertran, M. S. and Dale, B. E. (1985), Biotechnol. Bioeng. 27, 177–181.

    Article  CAS  Google Scholar 

  30. Wei, C.-J. and Cheng, C.-Y. (1985), Biotechnol Bioeng. 27, 1418–1426.

    Article  CAS  Google Scholar 

  31. Weimer, P. J. and Weston, W. M. (1985), Biotechnol. Bioeng. 27, 1540–1547.

    Article  CAS  Google Scholar 

  32. Grous, W. R., Converse, A. O., and Grethlein, H. E. (1986), Enzyme Microb. Technol. 8, 274–280.

    Article  CAS  Google Scholar 

  33. Rivers, D. B. and Emert, G. H. (1988), Biotechnol. Bioeng. 31, 278–281.

    Article  CAS  Google Scholar 

  34. Grohmann, K., Mitchell, D. J., Himmel, M. E., Dale, B. E., and Schroeder, H. A. (1989), Appl. Biochem. Biotechnol. 20/21, 45–61.

    Article  Google Scholar 

  35. Sinitsyn, A. P., Gusakov, A. V., and Vlasenko, E. Y. (1991), Appl. Biochem. Biotechnol. 30, 43–59.

    Article  CAS  Google Scholar 

  36. Kong, R., Engler, C. R., and Soltes, E. J. (1992), Appl. Biochem. Biotechnol. 34, 23–35.

    Article  Google Scholar 

  37. Thompson, D. N. and Chen, H.-C. (1992), Bioresource Technol. 39, 155–163.

    Article  CAS  Google Scholar 

  38. Koullas, D. P., Christakopoulos, P., Kekos, D., Macris, B. J., and Koukios, E. G. (1992), Biotechnol. Bioeng. 39, 113–116.

    Article  CAS  Google Scholar 

  39. Vinzant, T. B., Ehrman, C. I., Adney, W. S., Thomas, S. R., and Himmel, M. E. (1997), Appl. Biochem. Biotechnol. 62, 99–104.

    Article  CAS  Google Scholar 

  40. Moniruzzaman, M., Dale, B. E., Hespell, R. B., and Bothast, R. J. (1997), Appl. Biochem. Biotechnol. 67, 113–126.

    Article  CAS  Google Scholar 

  41. Holtzapple, M. T. (1993), in Encyclopedia of Food Science, Food Technology, and Nutrition, vol. 4, Macrae, R., Robinson, R. K., and Sadler, M. J., eds., Academic, London, pp. 758–767.

    Google Scholar 

  42. Bouveng, H. O. (1961), Acta Chem. Scand. 15, 87–96.

    Article  CAS  Google Scholar 

  43. Tarkow, H. and Feist, W. C. (1969), in Cellulases and Their Applications, Gould, R. F., ed., American Chemical Society, Washington, DC, pp. 197–218.

    Chapter  Google Scholar 

  44. Chang, V. S., Holtzapple, M. T., and Davidson, R. (1996), Part III, Final Report, Subcontract XAW-3-11181-03, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  45. Chang, V. S., Burr, B., and Holtzapple, M. T. (1997), Appl. Biochem. Biotechnol. 63-65, 3–19.

    Article  CAS  Google Scholar 

  46. Chang, V. S., Nagwani, M., and Holtzapple, M. T. (1998), Appl. Biochem. Biotechnol. 74, 135–159.

    Article  CAS  Google Scholar 

  47. Browning, B. L. (1967), Methods of Wood Chemistry, vol. 2, Interscience, New York.

    Google Scholar 

  48. Chemical Analysis & Testing Standard Procedure, National Renewable Energy Laboratory, Golden, CO.

    Google Scholar 

  49. Whistler, R. L. and Jeans, A. (1943), Ind. Eng. Chem., Anal. Ed. 15(5), 317, 318.

    Article  CAS  Google Scholar 

  50. Segal, L., Creely, J. J., Martin, A. E., Jr., and Conrad, C. M. (1959), Textile Res. J. 29, 786–794.

    Article  CAS  Google Scholar 

  51. Chang, S. (1999), PhD thesis, Texas A&M University, College Station.

    Google Scholar 

  52. Lee, Y.-H. and Fan, L. T. (1982), Biotechnol. Bioeng. 24, 2383–2406.

    Article  CAS  Google Scholar 

  53. Pugh, E. M. and Winslow, G. H. (1966), The Analysis of Physical Measurements, Addison-Wesley, Reading, MA.

    Google Scholar 

  54. Shoemaker, D. P., Garland, C. W., and Steinfeld, J. I. (1974), Experiments in Physical Chemistry, McGraw-Hill, New York.

    Google Scholar 

  55. Fan, L. T., Gharpuray, M. M., and Lee, Y.-H. (1987), Cellulose Hydrolysis, Springer-Verlag, Berlin.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chang, V.S., Holtzapple, M.T. (2000). Fundamental Factors Affecting Biomass Enzymatic Reactivity. In: Finkelstein, M., Davison, B.H. (eds) Twenty-First Symposium on Biotechnology for Fuels and Chemicals. Applied Biochemistry and Biotechnology. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-4612-1392-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1392-5_1

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-4612-7128-4

  • Online ISBN: 978-1-4612-1392-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics