Just Infinite Branch Groups

  • R. I. Grigorchuk
Part of the Progress in Mathematics book series (PM, volume 184)


In this chapter we define and investigate the class of branch groups. This class has only recently been defined, but the first examples of groups with a branch structure appeared at the end of the 1970s and the beginning of the 1980s ([45] [13] [14], [24]).


Normal Subgroup Closed Subgroup Cyclic Permutation Finite Index Branch Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Abercrombie, Subgroups and subrings of profinite rings, Math. Proc. Cambridge Phil. Soc. 116 (1994).Google Scholar
  2. [2]
    Y. Barnea and A. Shalev, Hausdorff dimension, pro-p groups and Kac—Moody algebras, Trans. Amer. Math. Soc. 349 (1997), 5073–5091.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    L. Bartholdi and R. I. Grigorchuk, Lie methods in growth of groups and groups of finite width, Computational and Geometric Aspects of Modern Algebra (Michael Atkinson et al., ed.), London Math. Soc. Lect. Note Ser., vol. 275, Cambridge Univ. Press, Cambridge, 2000, pp. 1–27Google Scholar
  4. [4]
    L. Bartholdi and R. I. Grigorchuk, On parabolic subgroups and Hecke algebras of some fractal group, preprint of FIM, ETH Zürich, 1999.Google Scholar
  5. [5]
    L. Bartholdi and R. I. Grigorchuk, On the spectrum of Hecke-type operators related to some fractal groups, preprint of Max-Planck Institute in Bonn, 1999.Google Scholar
  6. [6]
    H. Bass, M. V. Otero-Espinar, D. N. Rockmore and C. P. L. Tresser, Cyclic Renormalization and Automorphism Groups of Rooted Trees, Springer Lecture Notes in Mathematics 1621 (1996).Google Scholar
  7. [7]
    Y. V. Bodnarchuk, V. I. Sushchansky, Computation of the Sylow 2-subgroup of a symmetric group of degree which is a power of 2, in Computations in Algebra and Combinatorics, Kiev, 1978.Google Scholar
  8. [8]
    A. M. Brunner and S. Sidki, The generation of GL„ (Z) by finite state automata, Internat. J. Algebra and Comput. 8:1 (1998), 127–139.MathSciNetCrossRefGoogle Scholar
  9. [9]
    A. M. Brunner, S. Sidki and A. C. Viera, A just-nonsolvable torsion-free group defined on the binary tree, J. Alg. 211 (1999), 99–114.MATHCrossRefGoogle Scholar
  10. [10]
    T. Ceccherini-Silberstein, A. Machi and F. Scarabotti, Il gruppo di Grigorchuk di crescita intermedia, (in Italian), Rend. Circ. Mat. Palermo, (to appear).Google Scholar
  11. [11]
    J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-p Groupss, 2nd ed., Cambridge Studies in Advanced Maths. 61, C.U.P., Cambridge, 1999.CrossRefGoogle Scholar
  12. [12]
    P. Gawron, V. I. Sushchansky and V. Nekraskevych, Conjugacy classes of a group of automorphisms of a tree, Math Notes,to appear.Google Scholar
  13. [13]
    R. I. Grigorchuk, On the Burnside problem for periodic groups, Func. Anal. Appl. 14 (1980), 41–43.MathSciNetMATHGoogle Scholar
  14. [14]
    R. I. Grigorchuk, On Milnor’s problem on group growth, Soviet Math. Dokl. 28 (1983), 23–26.MATHGoogle Scholar
  15. [15]
    R. I. Grigorchuk, The growth degrees of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSR, Ser. Matem. 48:5 (1984) 939–985.MathSciNetGoogle Scholar
  16. [16]
    R. I. Grigorchuk, On torsion groups generated by finite automata, Abstracts of the All-Union Algebra Conference, Kishinev, 1985.Google Scholar
  17. [17]
    R. I. Grigorchuk, On the Hilbert-Poincaré series of graded algebras associated with groups, Matem. Sbornik 180:2 (1989), 207–225.MathSciNetGoogle Scholar
  18. [18]
    R. I. Grigorchuk, An example of a finitely presented amenable group which does not belong to the class EG, Matem. Sbornik 189:1 (1998), 75–98.MathSciNetCrossRefGoogle Scholar
  19. [19]
    R. I. Grigorchuk, On branch and just infinite groups, Abstracts of International Algebra Conference in Memory of Kurosh, Moscow, 1998.Google Scholar
  20. [20]
    R. I. Grigorchuk, On the system of defining relations and the Schur multiplier of periodic groups generated by finite automata. In Proceedings of Groups St Andrews 1997 in Bath,ed. C. M. Campbell, E.F. Robertson, N. Ruskuc, G. C. Smith, L.M.S. Lecture Notes (1999), 290–317.Google Scholar
  21. [21]
    R. I. Grigorchuk, W. N. Herfort and P. A. Zaleskii, The profinite completion of certain torsion p-groups, Algebra. Proc. Int. Conf. of the 90th Birthday of A.G. Kurosh, Walter de Gruyter, Berlin, New York, 2000, pp. 113–123.Google Scholar
  22. [22]
    R. I. Grigorchuk and J. S. Wilson, The conjugacy problem for certain branch groups, to appear.Google Scholar
  23. [23]
    N. Gupta and J. Fabrykowski, On groups with sub-exponential growth function II, J. Indian Math. Soc. (N. S.) 56:1–4 (1991), 217–228.MathSciNetMATHGoogle Scholar
  24. [24]
    N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z. 182 (1983), 385–388.MathSciNetMATHCrossRefGoogle Scholar
  25. [25]
    N. Gupta and S. Sidki, Some infinite p-groups, Algebra i Logika (1983), 584–589.Google Scholar
  26. [26]
    N. Gupta and S. Sidki, Extension of groups by tree automorphisme, Contributions to group theory, Cont. Math. 33, 232–246. A.M.S., Providence, Rhode Island, 1984.MathSciNetCrossRefGoogle Scholar
  27. [27]
    P. Hall, Wreath products and characteristically simple groups, Proc. Cambridge Phil. Soc. 58 (1962), 170–182.MATHCrossRefGoogle Scholar
  28. [28]
    P. de la Harpe, Topics in Geometric Group Theory, University of Chicago Press, Chicago, 2000.MATHGoogle Scholar
  29. [29]
    I. D. Ivanyuta, Sylow p-subgroups of the countable symmetric group, Ukrainian Math. J. 15:3 (1963), 240–249.MathSciNetGoogle Scholar
  30. [30]
    L. Kaloujnine, Sur les p-groupes de Sylow du groupe symétrique de degré pm, C.R. Acad. Sci. Paris, 221 (1945), 222–224.MathSciNetMATHGoogle Scholar
  31. [31]
    L. Kaloujnine, Sur les p-groupes de Sylow des groupes symétriques finis, Ann. Sci. Ecole Norm. Sup. 65 (1948), 239–279.MathSciNetMATHGoogle Scholar
  32. [32]
    G. Klaas, C. R. Leedham-Green and W. Plesken, Linear pro-p Groupss of Finite Width, Lecture Notes in Math. 1684, Springer, Berlin, 1997.Google Scholar
  33. [33]
    P. Lentulis et J. Tits, Sur le groupe des automorphismes de certains produits en couronne, C.R. Acad. Sci. Paris 305 (1987), 847–852.Google Scholar
  34. [34]
    I. G. Lysionok, A system of defining relations for the Grigorchuk group, Matem. Zametki 38 (1985), 503–511.Google Scholar
  35. [35]
    G. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1989.Google Scholar
  36. [36]
    J. L. Mennicke, Finite factor groups of the unimodular group, Annals of Math. 31 (1965), 31–37.MathSciNetCrossRefGoogle Scholar
  37. [37]
    A. V. Rozhkov, Centralizers of elements in some groups of automorphisms of a tree, Izv. RAN, Ser. Matem. 57:6 (1993), 82–105.Google Scholar
  38. [38]
    A. V. Rozhkov, The lower central series of some groups of automorphisms of trees, Matem. Zametki 60:2 (1996), 225–237.MathSciNetCrossRefGoogle Scholar
  39. [39]
    A. V. Rozhkov, Finiteness conditions in groups of automorphisms of trees, Algebra i logika 37:2 (1998), 568–605.MathSciNetMATHGoogle Scholar
  40. [40]
    S. J. Pride, The concept of “largeness” in group theory, in Word Problems II (Conf. on decision problems in algebra, Oxford, 1976). Studies in Logic and Foundations of Math. 95, pp. 299–335, North-Holland, Amsterdam—New York, 1980.Google Scholar
  41. [41]
    S. Sidki, On a 2-generated infinite 3-group: the presentation problem, J. Alg. 110 (1987), 13–23.MathSciNetMATHCrossRefGoogle Scholar
  42. [42]
    S. Sidki, On a 2-generated infinite 3-group: subgroups and automorphisms, J. Alg. 110 (1987), 24–55.MathSciNetMATHCrossRefGoogle Scholar
  43. [43]
    S. Sidki, Regular trees and their automorphisms, Monografias de matematica, v. 56, IMPA, Rio de Janeiro, 1998.MATHGoogle Scholar
  44. [44]
    S. Sidki, Automorphisms of 1-rooted trees: growth, circuit structure and acyclicity, J. of Math. Sci. 100:1 (2000), 1925–1943.MathSciNetMATHCrossRefGoogle Scholar
  45. [45]
    V. I. Suschansky, Periodic p-groups of permutations and the unrestricted Burnside problem, Dokl. AN SSSR 247 (1979), 557–561.Google Scholar
  46. [46]
    V. I. Suchshansky, Normal Structure of isometry groups of semifinite Baire metrics in Infinite Groups and Mixed Algebraic Structures, Kyev. Institute of Mathematics NAN of Ukraine, (1993), 270–289.Google Scholar
  47. [47]
    T. Vovkivsky, Infinite torsion groups arising as generalisations of the second Grigorchuk group, Algebra. Proc. Int. Conf. of the 90th Birthday of A.G. Kurosh, Walter de Gruyter, Berlin, New York, 2000.Google Scholar
  48. [48]
    J. S. Wilson, Groups with every proper quotient finite, Proc. Camb. Phil. Soc. 69 (1971), 373–391.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • R. I. Grigorchuk
    • 1
  1. 1.Steklov Institute of MathematicsMoscowRussia

Personalised recommendations