Skip to main content

Part of the book series: Progress in Physics ((PMP,volume 19))

Abstract

One of the most interesting partial differential equations in complex analysis is the Beltrami equation. We will give an overview of possible generalizations of this equation in case of quaternions together with properties of these equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Ahlfors, Lectures on Quasi Conformal Mappings, Van Nostrand, Princeton, 1966.

    Google Scholar 

  2. L. Bers, On a theorem of Mori and the definition of quasiconformality, Trans. Am. Math. Soc. 84 (1957), 78–84.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Brackx, R. Delanghe, and F. Sommen, Clifford analysis, Research Notes in Mathematics 76, Pitman Advanced Publishing Program, London, 1982.

    MATH  Google Scholar 

  4. B. Bojarski, Old and new on Beltrami equations, in Functional Ana-lytic Methods in Complex Analysis and Applications to Partial Differential Equations,Proceedings of the ICTP, Trieste, Italy, Feb. 8–19, 1988, A. S. A. Mshimba and W. Tutschke, eds., World Scientific, London, 1988, 173–188.

    Google Scholar 

  5. M. Coroi-Nedelcu, Asupra solutiei unui sister de ecuatii Cu derivate partiale de tip eliptic în Em, analog ecuaţiei lui Beltrami în complex, St. Cerc. Mat. 177 (1965), 1049–1058.

    MathSciNet  Google Scholar 

  6. B. Goldschmidt, A theorem about the representation of linear combi-nations in Clifford algebras, Beitrage zur Algebra und Geometrie 13 (1982), 21–24.

    MathSciNet  MATH  Google Scholar 

  7. K. Gürlebeck and U. Kähler, On a spatial generalization of the complex II-operator, J. Anal. Appl. 15 (1996) 2, 283–297.

    MATH  Google Scholar 

  8. K. Gürlebeck and U. Kählеr, On a boundary value problem of the biharmonic equation, Math. Meth. in the Applied Sciences 20 (1997), 867–883.

    Article  MATH  Google Scholar 

  9. K. Gürlebeck and H. Malonek, A hypercomplex derivative of mono-genic functions in ℝn+1 and its applications, Complex Variables 39 (1999), 1999–228.

    Google Scholar 

  10. K. Gürlebeck and W. Sprößig, Quaternionic Analysis and Elliptic Boundary Value Problems, ISNM 89, Birkhäuser, Basel, 1990.

    Book  MATH  Google Scholar 

  11. K. Gürlebeck and W. Sprößig, Quaternionic and Clifford Calculus for Engineers and Physicists, John Wiley &. Sons, Chichester, 1997.

    Google Scholar 

  12. L. Hörmander, An Introduction to Complex Analysis in Several Vari-ables, Van Nostrand, Princeton, 1966.

    Google Scholar 

  13. T. Iwaniec and G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1993), 29–81.

    Article  MathSciNet  MATH  Google Scholar 

  14. U. Kählеr, Application of hypercomplex II-operators to the solution of Beltrami systems, in Analytical and Numerical Methods in Quaternionic and Clifford Analysis, W. Sprößig and K. Giirlebeck, eds., Freiberger Forschungshefte, Freiberg, 1997, 69–75.

    Google Scholar 

  15. U. Кähler, On the solutions of higher-dimensional Beltrami-equations, Digital Proc. of the IKM 97, Weimar, 1997.

    Google Scholar 

  16. F. Kippig, Untersuchungen zu Randwert-und anfangswertaufgaben fur partielle differentialgleichungen mit methoden der Clifford analysis, Thesis, TU Bergakademie Freiberg, 1997.

    Google Scholar 

  17. J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds, Ann. of Math. 78 (1963), 112–148.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. V. Kravchenko and M. V. Shapiro, Integral representations for spatial models of mathematical physics, Pitman Research Notes in Mathematics Series 351, Pitman- Longman, 1996.

    MATH  Google Scholar 

  19. B. Malgrange, Sur l’intégrabilité des structures presque-complexes, Symposia Math. (INDAM), Vol. 2, Academic Press, 1969, 289–296.

    Google Scholar 

  20. H. Malonek, A new hypercomplex structure of the Euclidean space ℝm+1, Complex Variables 14 (1990), 25–33.

    Article  MathSciNet  MATH  Google Scholar 

  21. H. Malonek and B. Müller, Definition and properties of a hypercomplex singular integral operator, Results in Mathematics 22 (1992), 713–724.

    MATH  Google Scholar 

  22. S. G. Michlin and S. Prößdorf, Singuläre Integraloperatoren, Akademie-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  23. I. M. Mitelman and М. V. Shapiro, Differentiation of the Martinelli-Bochner integrals and the notion of hyperderivability, Math. Nachr. 172 (1995), 211–238.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Newlander and L. Nirenberg, Complex analytic coordinates in al-most complex manifolds, Ann. of Math. 65 (1957), 391–404.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Nijenhuis and W. B. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. 77 (1963), 424–489.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Riesz, Sur les maxima des formes billinéaires et sur les fonctionelles linéaires, Acta Math. 49 (1928), 465–497.

    Article  MathSciNet  Google Scholar 

  27. М. V. Shapiro and N. L. Vasilevski, On the Bergman kernel function in the Clifford analysis, in Clifford Algebras and their Applications in Mathematical Physics, F. Brackx, R. Delanghe, and H. Serras, eds., Kluwer, Dordrecht, 1993, 183–192.

    Chapter  Google Scholar 

  28. М. V. Shapiro and N. L. Vasilevski, On the Bergman kernel function in hypercomplex analysis, Acta Appl. Math. 46 1 (1997), 1–27.

    Article  MathSciNet  MATH  Google Scholar 

  29. Шевченко, B. И., O лokaльном ςoмеomорфuзме mрeхмeрного np oсmрансmеa, oсуwесmеляемом решением нeкоторой eллиmuчeскoй сuсmeмьι, Доклaды Академии Наук СССР 5 (1962), 1035–1038.

    Google Scholar 

  30. W. Sprößig, Über eine mehrdimensionale operatorrechnung über beschränkten gebieten desn, Thesis, TH Karl-Marx-Stadt, 1979.

    Google Scholar 

  31. A. Sudbery, Quaternionic Analysis, Math. Proc. Carnbr. Phil. Soc. 85 (1979), 199–225.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. N. Vekua, Generalized Analytic Functions, Addison-Wesley, Read-ing, 1963.

    MATH  Google Scholar 

  33. A. Yanushauskas, On multi-dimensional generalizations of the Cauchy-Riemann system, Complex Variables 26 (1994), 53–62.

    Article  MathSciNet  MATH  Google Scholar 

  34. I. V. Zhuravlev, On the existence of a homeomorphic solution for a multidimensional analogue of the Beltrami equation, Russian Acad. Sci. Dokl. Math. 45 (3) (1992), 649–652.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kähler, U. (2000). On Quaternionic Beltrami Equations. In: Ryan, J., Sprößig, W. (eds) Clifford Algebras and their Applications in Mathematical Physics. Progress in Physics, vol 19. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1374-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1374-1_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7119-2

  • Online ISBN: 978-1-4612-1374-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics