Skip to main content

Revisiting the Celebrated Thesis of J. de Groot: “Everything is Linear.”

  • Chapter
  • 408 Accesses

Part of the book series: Trends in Mathematics ((TM))

Abstract

By a system (X, T) we mean a continuous selfmap T: XX of a separable metrizable space X and by its linearization a topological embedding i: XE into a linear system (E, L) consisting of a Hilbert or Euclidean space E and a continuous linear operator L: EE and satisfying the equivariancy condition L ○ i = iT. Our main results concern linearization by systems (E, L) in which the norm of L is < 1. By a weakening of the equivariancy condition Li = iT, we show that a system which does not admit a finite dimensional linearization may still be linearized in this modified sense in a finite dimensional space.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.C. Baayen and J. deGroot. Linearazation of Locally Compact Transformation Groups in Hilbert Space, Math. System Theory, Vol. 2, No. 4, 363–379.

    Google Scholar 

  2. A.H. Copeland and J. deGroot. Linearizations of Autohomeomorphisms, Notices of Am. Math. Soc., 6, (1959), 844.

    Google Scholar 

  3. A.H. Copeland and J. deGroot. Linearization of a Homeomorphism, Am. Math., 144 (1961), 80–92.

    MathSciNet  MATH  Google Scholar 

  4. M. Edelstein. On the Representation of Mappings of Compact Metrizable Spaces as Restrictions of Linear Transformations, Canad. J. Math., 22 (1970), 372–375.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Edelstein. On the Homomorphics and Isomorphic Embeddings of a Semiflow into a Radial Flow, Pacific J. Math., 91 (1980), 281–291.

    MathSciNet  MATH  Google Scholar 

  6. J. deGroot. Every Continuous Mapping is Linear, Notices Am. Math. Soc., 6 (1959), 754.

    Google Scholar 

  7. L. Janos. A Converse of Banach’s Contraction Theorem, Proc. Amer. Math. Soc., 18 (1967), 287–289.

    MathSciNet  MATH  Google Scholar 

  8. L. Janos. On Representation of Self-Mappings, Proc. Amer. Math. Soc., 26 (1970), 529–533.

    MathSciNet  MATH  Google Scholar 

  9. L. Janos. A Linearization of Semiflows in the Hilbert Space, ℓ2, Topology Preceedings, Baton Rouge, LA, 2 (1977), 219–232.

    Google Scholar 

  10. L. Janos, H.M. Ko, K.K. Tau. Edelstein’s Contractivity and Attractors, Proc. Amer. Math. Soc., 76 (1979), 339–344.

    MathSciNet  MATH  Google Scholar 

  11. L. Janos, R.C. McCann and J.L. Solomon. Nonexpansive Uniformly Asymptotically Stable Flows are Linear, Canad. Math. Bull., 24(4) (1981), 401–407.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Janos. Differential Equations which are Topologically Linear, Proc. Amer. Math. Soc., 83 (1981), 629–632.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.R. Meyers. A Converse to Banach’s Contraction Theorem, J. Res. Nat. Bureau of Standard, 71B (1971), 73–76.

    Article  MathSciNet  Google Scholar 

  14. C. Moore and K. Schmidt. Coboundaries and Homomorphisms for Nonsingular Actions and a Problem of H. Helson, Proc. London. Math. Soc., 40 (1980), 443–475.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Nussbaum. Some Asymptotic Fixed Point Theorems, Trans. Amer. Math. Soc., 171 (1972), 349–375.

    Article  MathSciNet  MATH  Google Scholar 

  16. V.J. Opoitsev. A Converse to the Principle of Contracting Maps, Russian Math. Surveys, 31 (1976), 175–204.

    Article  MATH  Google Scholar 

  17. W. Parry and S. Tuncel. Classification Problems in Ergodic Theory, London Math. Soc. Lecture Note Ser. 67, Cambridge Univ. Press, Cambridge, 1982.

    Book  MATH  Google Scholar 

  18. J.A. Rus. Weakly Picard Mappings, Comment. Math. Univ. Carolin., 34 (1993), 769–773.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Janos, L. (2001). Revisiting the Celebrated Thesis of J. de Groot: “Everything is Linear.”. In: Koslowski, J., Melton, A. (eds) Categorical Perspectives. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1370-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1370-3_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7117-8

  • Online ISBN: 978-1-4612-1370-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics