Skip to main content

Part of the book series: Progress in Physics ((PMP,volume 18))

Abstract

Several Clifford algebras that are covariant under the action of a Lie algebra g can be deformed in a way consistent with the deformation of U g into a quantum group (or into a triangular Hopf algebra) U q g, i.e., so as to remain covariant under the action of U q g. In this report, after recalling these facts, we review our results regarding the formal realization of the elements of such “q-deformed” Clifford algebras as “functions” (polynomials) in the generators of the undeformed ones, in particular, the intriguing interplay between the original and the q-deformed symmetry. Finally, we briefly illustrate their dramatic consequences on the representation theories of the original and of the q-deformed Clifford algebra and mention how these results could turn out to be useful in quantum physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.G. Drinfel’d, On constant quasiclassical solutions of the Yang-Baxter quantum equation, Sov. Math. Dokl. 28 (1983), 667.

    MATH  Google Scholar 

  2. V. G. Drinfeld, Quantum groups, in Proceedings of the International Congress of Mathematicians, Berkeley, 1986, Gleason, ed., Providence, (1987), 798. M. Jimbo, Lett. Math. Phys. (1985), 10, 63. [3] V. G. Drinfeld, Quasi Hopf algebrae, Leningrad Math. J. 1 ( 1990 ), 1419.

    Google Scholar 

  3. G. Fiore, Braided chains of q-deformed Heisenberg algebrae, J. Phys. A 31 (1998), 5289.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Fiore, Deforming maps for Lie group covariant creation and annihilation operators, J. Math. Phys. (1998), 39, 3437.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Fiore, Q-deforming maps for Lie group covariant Heisenberg algebras, in the Proceedings of the 5th Wigner Symposium, Vienna, August 1997, ed. L. Kasperkowitz, Embedding q-deformed Heisenberg algebras into undeformed ones, Rep. Math. Phys..

    Google Scholar 

  6. L. D. Faddeev, N. Y. Reshetikhin, and L. A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra I Analysis, 1 (1989), 178; translation: Leningrad Math. J. 1 (1990), 193.

    MathSciNet  MATH  Google Scholar 

  7. M. Gerstenhaber, On the deformation of rings and algebrae, Ann. Math. 79 (1964), 59.

    Article  MathSciNet  MATH  Google Scholar 

  8. T. Hayashi, Q-analogues of Clifford and Weyl algebras-spinor and oscillator representations of quantum enveloping algebras, Commun. Math. Phys. 127 (1990), 129.

    Article  Google Scholar 

  9. A. J. Macfarlane, J. Phys. A22 (1989), 4581. T. Hayashi, Commun. Math. Phys. 127 (1990), 129. M. Chaichian and P. Kulish, Phys. Lett. B234 (1990), 72.

    Google Scholar 

  10. S. Murakami, F. Gvhmann, Algebraic solution of the Hubbard Model on the infinite interval, Nucl. Phys. B512 (1998), 637. F. Bonechi, E. Celeghini, R. Giachetti, E. Sorace, M. Tarlini, Quantum Galilei group as symmetry of magnons, Phys. Rev. B46 (1992), 5727.

    Article  Google Scholar 

  11. C. Ohn, A *-Product on SL(2) and the corresponding nonstandard quantum- U(sl(2)), Lett. Math Phys. 166 (1994), 63.

    Google Scholar 

  12. W. Pusz, S. L. Woronowicz, Twisted second quantization, Reports on Mathematical Physics (1989), 27, 231.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. Pusz, Twisted canonical anticommutation relations, Reports on Mathematical Physics 27 (1989), 349.

    Article  MathSciNet  MATH  Google Scholar 

  14. N. Yu. Reshetikhin, Multiparameter quantum groups and twisted quasitri-angular Hopf algebrae, Lett. Math. Phys. 20 (1990), 331.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. L. Curtright, G. I. Ghandour, C. K. Zachos, Quantum algebra deforming maps, Clebsch-Gordan coefficients, coproducts, U and R Matrices, J. Math. Phys. 32 (1991), 676.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fiore, G. (2000). On q-Deformations of Clifford Algebras. In: Abłamowicz, R., Fauser, B. (eds) Clifford Algebras and their Applications in Mathematical Physics. Progress in Physics, vol 18. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1368-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1368-0_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7116-1

  • Online ISBN: 978-1-4612-1368-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics