Skip to main content

Semisimple Graded Lie Algebras

  • Chapter
  • 591 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 185))

Abstract

Let \(\mathfrak{g}\) be a real semisimple Lie algebra and τ be a Cartan involution of \(\mathfrak{g}\) and let \(\mathfrak{g} = \mathfrak{k} + \mathfrak{p}\) be the Cartan decomposition by τ, where \(\tau {{|}_{\mathfrak{k}}} = 1\) and \(\tau {{|}_{\mathfrak{p}}} = - 1\). Let a be \(\mathfrak{a}\) maximal abelian subspace of \(\mathfrak{p}\) and \(\mathfrak{h}\) be a Cartan subalgebra of \(\mathfrak{g}\) containing \(\mathfrak{a}\). Then we have \(\mathfrak{h} = {{\mathfrak{h}}^{ + }} + \mathfrak{a}\), where \({{\mathfrak{h}}^{ + }} = \mathfrak{h} \cap \mathfrak{k}\) and \(\mathfrak{a} = \mathfrak{h} \cap \mathfrak{p}\). Let \({{\mathfrak{g}}^{\mathbb{C}}}\) and \({{\mathfrak{h}}^{\mathbb{C}}}\) be the complexifications of \(\mathfrak{g}\) and \(\mathfrak{h}\). Then \({{\mathfrak{h}}^{\mathbb{C}}}\) is a Cartan subalgebra of \({{\mathfrak{g}}^{\mathbb{C}}}\). Let \(\tilde{\Delta } = \Delta ({{\mathfrak{g}}^{\mathbb{C}}},{{\mathfrak{h}}^{\mathbb{C}}})\) be the root system for the pair left \(({{\mathfrak{g}}^{\mathbb{C}}},{{\mathfrak{h}}^{\mathbb{C}}})\). If we put \({{\mathfrak{h}}_{\mathbb{R}}} = i{{\mathfrak{h}}^{ + }} + \mathfrak{a}\) then any root is real-valued on the real subspace \({{\mathfrak{h}}_{\mathbb{R}}}\) of \({{\mathfrak{h}}^{\mathbb{C}}}\). Since the Killing form B of \(\mathfrak{g}\) is positive-definite on \({{\mathfrak{h}}_{\mathbb{R}}}\), a root \(\alpha \in \tilde{\Delta }\) can be viewed as an element of \({{\mathfrak{h}}_{\mathbb{R}}}\). We have thus \(\tilde{\Delta } \subset {{\mathfrak{h}}_{\mathbb{R}}}\). Let σ be the conjugation of \({{\mathfrak{g}}^{\mathbb{C}}}\) with respect to \(\mathfrak{g}\) . Then \(\sigma {{|}_{\mathfrak{a}}} = 1\) and \(\sigma {{|}_{{i{{\mathfrak{h}}^{ + }}}}} = - 1\), and hence σ leaves \({{\mathfrak{h}}_{\mathbb{R}}}\) stable. Therefore σ permutes roots in \(\tilde{\Delta }\). Let us put \({{\tilde{\Delta }}_{ \bullet }} = \tilde{\Delta } \cap i{{\mathfrak{h}}^{ + }}\), the set of imaginary roots with respect to \(\mathfrak{h}\). We then have \({{\tilde{\Delta }}_{ \bullet }} = \{ \alpha \in \tilde{\Delta }:\sigma (\alpha ) = - \alpha \}\). A lexicographic order > on \(\tilde{\Delta }\) is called a σ-order, if σis order-preserving on \(\tilde{\Delta } - {{\tilde{\Delta }}_{ \bullet }}\), or σ (α)> 0, as long as α > 0, \(\alpha \in \tilde{\Delta } - {{\tilde{\Delta }}_{ \bullet }}\). Such an order is given by choosing a basis \(\{ {{H}_{1}}, \ldots {{H}_{r}},{{H}_{{r + 1}}}, \ldots ,{{H}_{l}}\}\) of \({{\mathfrak{h}}_{\mathbb{R}}}\) such that \(\{ {{H}_{1}}, \ldots ,{{H}_{r}}\}\) is a basis of \(\mathfrak{a}\). Now let us fix a σ-order in \(\tilde{\Delta }\). The simple root system \(\tilde{\prod } = \{ {{\alpha }_{1}}, \ldots ,{{\alpha }_{l}}\}\) of \(\tilde{\Delta }\) with respect to this σ-order is called aσ -fundamental system of \(\tilde{\Delta }\). The subset \({{\tilde{\prod }}_{ \bullet }} = \tilde{\prod } \cap {{\tilde{\Delta }}_{ \bullet }}\) of \(\tilde{\prod }\) is a basis for \({{\tilde{\Delta }}_{ \bullet }}\).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kaneyuki, S. (2000). Semisimple Graded Lie Algebras. In: Analysis and Geometry on Complex Homogeneous Domains. Progress in Mathematics, vol 185. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1366-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1366-6_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7115-4

  • Online ISBN: 978-1-4612-1366-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics