Skip to main content

On Exact Maximal Khinchine Inequalities

  • Conference paper
High Dimensional Probability II

Part of the book series: Progress in Probability ((PRPR,volume 47))

Abstract

Let ε 1 …, ε n be independent Rademacher random variables, and let a l, …, a n be real numbers such that \(a_1^2 + \ldots a_n^2 = 1\). Let (B t ) be a standard Brownian motion. One has the generalized moment identity

$$Eg\left( {\mathop {0 \leqslant t \leqslant 1|x + {B_t}|}\limits^{\max } } \right) = 2{\sum\limits_{n = 1}^\infty {\left( {-1} \right)} ^{n-1}}Eg\left( {x \vee \frac{{|x + {B_1}|}}{{2n-1}}} \right),$$

where x > 0 and g is non-decreasing with g(x) = 0 and Eg(|x + B 1|) < ∞. This identity is used to show that the inequality

$${\rm E}\mathop {\max }\limits_{1 \leqslant k \leqslant n} \left| {\sum\limits_{i = 1}^k {a_i \varepsilon _i } } \right|^p \leqslant {\rm E}\mathop {\max }\limits_{0 \leqslant t \leqslant 1} \left| {B_t } \right|^p ,$$

conjectured in [5], fails in a ne’ghborhood of p = 1. However, this inequality is proved to hold for p ≥ 3 in the case a l=⋯=a a=1/\(\sqrt {n;}\) the latter result is based on a “discrete” version of the above generalized moment identity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.

    MATH  Google Scholar 

  2. L. E. Dubins, L. A. Shepp, and A. N. Shiryaev, Optimal stopping rules and maximal inequalities for Bessel processes, Theory Probab. Appl. 38(1993), 226–261.

    Article  MathSciNet  Google Scholar 

  3. M. L. Eaton, A note on symmetric Bernoulli random variables, Ann. Math. Statist. 41(1970), 1223–1226.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. L. Eaton, A probability inequality for linear combinations of bounded random variables, Ann. Statist. 2(1974), 609–614.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. E. Graversen and G. Peskir, Extremal problems in the maximal inequalities of Khinchine, Math. Proc. Cambridge Philos. Soc. 123(1) (1995), 169–177.

    Article  MathSciNet  Google Scholar 

  6. U. Haagerup, The best constants in the Khinchine inequality, Studia Math. 70(1982), 231–283.

    MathSciNet  MATH  Google Scholar 

  7. G. A. Hunt, An inequality in probability theory, Proc. Amer. Math. Soc. 6(1955), 506–510.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Khinchin, Über dyadische Brüche, Math. Z. 18(1923), 109–116.

    Article  MathSciNet  Google Scholar 

  9. R. E. A. C. Paley and A. Zygmund, On some series of functions, Proc. Cambridge Philos. Soc. 26(1) (1930), 337–357.

    Article  MATH  Google Scholar 

  10. I. Pinelis, Extremal probabilistic problems and Hotelling’s T 2 test under a symmetry condition, Ann. Statist. 22(1994), 357–368.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this paper

Cite this paper

Pinelis, I. (2000). On Exact Maximal Khinchine Inequalities. In: Giné, E., Mason, D.M., Wellner, J.A. (eds) High Dimensional Probability II. Progress in Probability, vol 47. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1358-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1358-1_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7111-6

  • Online ISBN: 978-1-4612-1358-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics