Advertisement

Ab Initio Calculations Related to Glucagon

Chapter
  • 89 Downloads

Abstract

Glucagon is a polypeptide (29 residues) hormone that regulates gluconeogenesis and glycogenesis in the liver. Its effects are mediated by cAMP (cyclic adenosine monophosphate), which is synthesized in a reaction catalyzed by membrane-bound adenylate cyclase. As discovered by Earl Sutherland in the 1950s, glucagon binds to receptors on the surface of liver cells, and there they trigger the formation of cAMP. While the hormone itself is thought not to penetrate the cell, cAMP mediates the intracellular effects, serving thus as a second messenger to the hormone, which is the first messenger.

Keywords

Adenylate Cyclase Activity Aspartic Residue Glutamic Residue Glucagon Receptor Inhibition Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stryer, L. Biochemistry, 4th ed. W.H. Freeman and Co., New York, 1995.Google Scholar
  2. 2.
    Unson, C.G., Gurzenda, E.M., Iwasa, K., and Merrifield, R.B. Journal of Biol. Chem. 264, 2, 789, 1989.Google Scholar
  3. 3.
    Sasaki, K., Dockerill, S., Adamiak, D.A., Tickle, I.J., and Blundell, T. Nature 257, 751, 1975.PubMedCrossRefGoogle Scholar
  4. 4.
    Chou, P.Y., and Fassman, G.D. Adv. Enzymol.2, 45, 1978.Google Scholar
  5. 5.
    Chou, P.Y., and Fassman, G.D. Biochemistry 14, 2536, 1975.PubMedCrossRefGoogle Scholar
  6. 6.
    Unson, C.G., Andreu, D., Gurzenda, E.M., and Merrifield, R.B. Proc. Natl. Acad. Sci. USA 84, 4083, 1987.PubMedCrossRefGoogle Scholar
  7. 7.
    Andreu, D., and Merrifield, R.B. In Peptides: Structure and Function, Deber, C.M., Hruby, V.J., and Kopple, K.D. (eds.) Pierce Chem. Co., Rockford, IL, 595, 1985.Google Scholar
  8. 8.
    Andreu, D., and Merrifield, R.B. Eur. J. Biochem. 164, 585, 1987.PubMedCrossRefGoogle Scholar
  9. 9.
    Wakelam, M.J.O, Murphy, G.S., Hruby, V.J., and Houslay, M.D. Nature 323, 68, 1986.PubMedCrossRefGoogle Scholar
  10. 10.
    Trimble, E.R., Bruzzone, R., Bidin,T.J., Meehan, C.J.,Andreu, D., and Merrifield, R.B. Proc. Natl. Acad. Sci. USA 84, 3146, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Stewart, J.M., York, E.J., Baldwin, R.L., and Shoemaker, K.R. 19th European Peptide Symposium 1986, Porto Carras, Greece (abs.).Google Scholar
  12. 12.
    Lu, G.S., Mojsov, S., and Merrifield, R.B. Int. J. Pept. Prot. Res. 29, 545, 1987.CrossRefGoogle Scholar
  13. 13.
    Korn, A.P., and Ottensmayer, F.P. J. Theor. Biol. 105, 403, 1983.PubMedCrossRefGoogle Scholar
  14. 14.
    Chung, F.Z., Wang, C.D., Potter, P.C., Venter, J.C., and Frase, C.M. J. Biol. Chem. 263, 4052, 1988.PubMedGoogle Scholar
  15. 15.
    Gronenborn, A.M., Boverman, G., and Core, G.M. FEBS Lett. 215, 88, 1988.CrossRefGoogle Scholar
  16. 16.
    Unson, C.G., Macdonald, D., and Merriefield, R.B. Arch. Biochem. Biophys. 300, 747, 1993.PubMedCrossRefGoogle Scholar
  17. 17.
    Merriefield, R.B., and Unson, C.G. Peptides Proc. Chinese Peptide Symp., Hangzhou, China 251,1993.Google Scholar
  18. 18.
    Unson, C.G., and Merrifield, R.B. Proc. Natl. Acad. Sci. USA 92, 454, 1994.CrossRefGoogle Scholar
  19. 19.
    Schrag, J.D., Li, Y., Wu, S., and Cygler, M. Nature 351, 761, 1991.PubMedCrossRefGoogle Scholar
  20. 20.
    Post, S.R., Rubinstein, P.G., and Tager, H.S. Proc. Natl. Acad. Sci. USA 90, 1662, 1993.PubMedCrossRefGoogle Scholar
  21. 21.
    Berstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F.Jr., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T., and Tasumi, M. The protein data bank. J. Mol. Biol. 112, 535, 1977.CrossRefGoogle Scholar
  22. 22.
    Cramer, C.J., and Truhlar, D.J. AMSOL Program 606, QCPE. Indiana Univ. Bloomington, Indiana, 1992.Google Scholar
  23. 23.
    Carruthers, C.J.L., Unson, C.G., Kim, H.N., and Sakmar, T.P. J. Biol. Chem. 269, 18, 29321, 1994.PubMedGoogle Scholar
  24. 24.
    Jelinek, L.J., Lok, S., Rosenberge, G.B., Smith, R.A., Grant, F.J., Biggs, S., Bensch, RA., Kuijper, J.L., Sheppard, P.O., Sprecher, C.A., O’Hara, PJ., Foster, D., Walker, K.M., Chen, L.H.J., McKernan, P.A., and Kindsvogel, W. Science 259, 1614, 1993.PubMedCrossRefGoogle Scholar
  25. 25.
    Iwanji, V., and Vincent, A.C. J. Biol. Chem. 265, 2 1302, 1990.Google Scholar
  26. 26.
    Unson, C.G., and Merrifield, R.B. Proc. Natl. Acad. Sci. USA, 91, 454, 1994.PubMedCrossRefGoogle Scholar
  27. 27.
    Wright, D.E., and Rodbell, M. J. Biol. Chem. 254, 268, 1979.PubMedGoogle Scholar
  28. 28.
    Iyengar, R., and Herberg, J.T. J. BioL Chem. 259, 5222, 1983.Google Scholar
  29. 29.
    Unson, C.G., Wu, C.R., and Merrifield, R.B. Biochemistry 33, 6884, 1994.PubMedCrossRefGoogle Scholar
  30. 28.
    Unson, C.G., Cypress, A.M., Wu, C.R., Goldsmith, P.K., Merrifield, R.B., and Sakman, T.P Proc. Natl. Acad. Sci. USA V93, P 310, 1996.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.John Jay College and Graduate SchoolCity University of New YorkNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations