Proline features the amino group as part of a five-membered ring, differing thus from other amino acids in that its side chain is bonded to the backbone nitrogen atom and to the alpha carbon atom. This cyclic structure influences greatly the protein architecture.


Proline Residue Alpha Helix Helical Conformation Ring Pucker Alpha Carbon Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stryer, L. Biochemistry, 4th ed. W.H. Freeman and Company, New York, 1995.Google Scholar
  2. 2.
    Piela, L., Nemethy, G., and Sheraga, H. A. Biopolymers 26, 1587, 1987.PubMedCrossRefGoogle Scholar
  3. 3.
    Sankararamakrishnan, R., and Vishveshwara, S. Biopolymers 30, 287, 1990.PubMedCrossRefGoogle Scholar
  4. 4.
    Dasgupta, S., and Bell, J.A. Int. J. Pep. Protein Res. 41, 499, 1993.CrossRefGoogle Scholar
  5. 5.
    DeTar, D.F., and Luthra, N.P. J. Am. Chem. Soc. 99, 1232, 1977.PubMedCrossRefGoogle Scholar
  6. 6.
    Cabrol, D., Brock, H., and Vasilescu, D. Int. J. Quantum Chem. 6, 365, 1979.Google Scholar
  7. 7.
    Schellman, J.A., and Neilson, E.B. In Conformation of Biopolymers, Ramachandrau, G.N., ed. Academic, London, 1976.Google Scholar
  8. 8.
    Brunne, R.M., van Gunsteren, W.F., Bruschweiler, R., and Ernst, R.R. J. Am Chem. Soc. 115, 4764, 1993.CrossRefGoogle Scholar
  9. 9.
    van Gunstern, W.F., and Berendsen, H.J.C. Groningen Molecular Simulations (GROMOS), Library Manual, Biomos. Groningen, 1987.Google Scholar
  10. 10.
    Kessler, H., Muller, A., and Pook, K.H. Liebigs Ann. 903, 1989.Google Scholar
  11. 11.
    Kessler, H., Bats, J.W., Lautz, J., and Muller, A. Liebigs Ann. 913, 1989.Google Scholar
  12. 12.
    Patel, D.J. Biochemistry 12, 667, 1973.PubMedCrossRefGoogle Scholar
  13. 13.
    Madi, Z.L., Griesinger, C., and Ernst, R.R. J. Am. Chem. Soc. 112, 2008, 1990.Google Scholar
  14. 14.
    van Gunsteren, W.F., and Berendsen, H.J.C. Mol. Simulations 1, 173, 1988.CrossRefGoogle Scholar
  15. 15.
    Shi, Y.Y., Wang, L., and van Gunsteren, W.F. Mol. Simulations 1, 369, 1988.CrossRefGoogle Scholar
  16. 16.
    Hurley, J.H., Mason, D.A., and Matthews, B.W. Biopolymers 32, 1443, 1992.PubMedCrossRefGoogle Scholar
  17. 17.
    Matthews, B.W., Nicholson, H., and Becktel, W.J. Proc. Natl. Acad. Sci. USA 84, 6663, 1987.PubMedCrossRefGoogle Scholar
  18. 18.
    Nicholson, H., Soderlind, E., Trontrud, D., and Matthews, B.W. Biopolymers 32, 1431, 1992.PubMedCrossRefGoogle Scholar
  19. 19.
    Summers, N.L., and Karplus, M. J. Mol. Biol. 216, 991, 1990.PubMedCrossRefGoogle Scholar
  20. 20.
    Schimmel, P.R., and Flory, P.J. J. Mol. Biol. 34, 105, 1968.PubMedCrossRefGoogle Scholar
  21. 21.
    Nicholson, H., Tronrud, D.E., Becktel, W.J., and Matthews, B.W. Biopolymers 32, 1431, 1992.PubMedCrossRefGoogle Scholar
  22. 22.
    Alber, T., Bell, J.A., Dao-Pin, S., Nicholson, H., Wosniak, J.A., Cook, S., and Matthews, B.W. Science 239, 631, 1988.PubMedCrossRefGoogle Scholar
  23. 23.
    O’Neil, K., and DeGrado, W.L. Science 250, 646, 1990.PubMedCrossRefGoogle Scholar
  24. 24.
    Weiner, S.J., Kollman, P.A., Nguyen, D.T., and Case, D.A. J. Comp. Chem.7, 230, 1986.CrossRefGoogle Scholar
  25. 25.
    Sauer, U., Dao-Pin, S., and Matthews, B.W. J. Biol. Chem. 267, 2393, 1986.Google Scholar
  26. 26.
    Yun, R.H., Anderson, A., and Hermans, J. Proteins 10, 219, 1991.PubMedCrossRefGoogle Scholar
  27. 27.
    Tronrud, D.E., Ten Eyck, L.F., and Matthews, B.W. Acta Cryst. A 43, 489, 1987.CrossRefGoogle Scholar
  28. 28.
    Sapse, A.M., Mallah-Levy, L., Daniels, S.B., and Erickson, B.W. J. Am. Chem. Soc. 109, 3526, 1987.CrossRefGoogle Scholar
  29. 29.
    Karle, I.L. J. Am. Chem. Soc. 100, 1286, 1978.CrossRefGoogle Scholar
  30. 30.
    Matsuzaki, T., and Itaka, Y. Acta Cryst. A27, 5007, 1971.Google Scholar
  31. 31.
    Mizushima, S., Shimanoucki, T., Tsuboi, M., Sugita, T., Kurosaki, K., Matagu, M., and Souda, S. J. Am. Chem. Soc. 74, 4639, 1952.CrossRefGoogle Scholar
  32. 32.
    Pullman, B., Maigret, B., and Perahia, D. Theor. Chim. Acta 18, 44, 1970.CrossRefGoogle Scholar
  33. 33.
    Ramek, M., Kerterer, A.M., Teppen, B. J., and Schafer, L. THEOCHEM 352, 59, 1995.Google Scholar
  34. 34.
    Zimmerman, S.S., Pottle, M.S., Nemethy, G., and Scheraga, H.A. Macromolecules 1, 10, 1977.Google Scholar
  35. 35.
    Kelterer, A.M., Ramek, M., Frey, R.F., Cao, M., and Schafer, L. THEOCHEM 310, 45, 1994.CrossRefGoogle Scholar
  36. 36.
    Thomasson, K.A., and Applequist, J. Biopolymers 30, 437, 1990.PubMedCrossRefGoogle Scholar
  37. 37.
    Matsuzaki, T., and Iitaka, Y. Acta Cryst. B27, 507, 1971.CrossRefGoogle Scholar
  38. 38.
    Bendetti, E., Christense, A., Gilon, C., Fuller, W., and Goodman, M. Biopolymers 22, 305, 1976.CrossRefGoogle Scholar
  39. 39.
    Madison, V., Atreyi, M., Deber, C.M., and Blount, E.R. J. Am. Chem. Soc. 96, 6725, 1974.PubMedCrossRefGoogle Scholar
  40. 40.
    Ramek, M., Keltere, A.M., and Nikolic, S. Proceed. of the Sanibel Symp. (Int. Quantum Chem.) 1997. Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.John Jay College and Graduate SchoolCity University of New YorkNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations