Advertisement

The Diaminobutyric (DABA), Delta Aminopentanoic, and Epsilon Aminohexanoic Acids

Chapter
  • 90 Downloads

Abstract

The L isomer of DABA, 2,4-diaminobutyric acid, is a major component of the polymixin group of antibiotics and a component of bacterial cell walls and of certain Lathyrus and related seeds (1–2). It was found to be neurotoxic in rats and mice (3), though it may not be neurotoxic in humans. L-DABA is widely distributed in nature (4).

Keywords

Torsion Angle Proton Affinity High Proton Affinity Aminohexanoic Acid Nipecotic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ressler, C., Restone, P.A., and Ehrenberg, R.H. Science 134, 188, 1961.PubMedCrossRefGoogle Scholar
  2. 2.
    Bell, E.A., and Tirimana, A.S.L. Biochem. J. 97, 104, 1965.PubMedGoogle Scholar
  3. 3.
    Kessel, D. Fed. Proc. Fed. Amer. Chem. Soc. Exp. Biol. 18, 258, 1959.Google Scholar
  4. 4.
    Chen, C.H., Flory, W., and Koeppe, R.E. Tox. and Appl. Pharmacology23, 334, 1972.CrossRefGoogle Scholar
  5. 5.
    Erecinska, M., Troeger, M.B., and Alston, T.A. J. Neurochem. 46, 1452, 1986.PubMedCrossRefGoogle Scholar
  6. 6.
    Iversen, L.L., and Johnston, G.A.R. J. Neurochem. 18, 1939, 1971.PubMedCrossRefGoogle Scholar
  7. 7.
    Roskoski, R. J. Neurochem. 36, 1236, 1981.CrossRefGoogle Scholar
  8. 8.
    Simon, J.R., Martin, D.L., and Kroll, M. J. Neurochem. 23, 981, 1974.PubMedCrossRefGoogle Scholar
  9. 9.
    Radian, R., and Kanner, B.I. Biochemistry. 26, 1236, 1983.CrossRefGoogle Scholar
  10. 10.
    O’Neal, R.M., Chen, C.H., Reynolds, C.S., Meghal, S.K., and Koeppe, R.E. Biochem. J. 106, 699, 1968.PubMedGoogle Scholar
  11. 11.
    Horton, R.W., Collins, J.F., Anlezark, G.M., and Meldrum, B.S. Eur. J. Pharmacol. 59, 75, 1979.PubMedCrossRefGoogle Scholar
  12. 12.
    Bichard, A.R., and Little, H.J. Br. J. Pharmacol. 76, 447, 1982.PubMedCrossRefGoogle Scholar
  13. 13.
    Rostain, J.C., Wardley-Smith, B., Forni, C., and Halsey, M.J. Neuropharmacol. 25, 5, 545, 1986.CrossRefGoogle Scholar
  14. 14.
    Meldrum, B.S., Croucher, M.J., and Krogsgaard-Larsen, R. Excerpta Medica, 182, 1982.Google Scholar
  15. 15.
    Hinazumi, H., and Mitsui, T. Acta Cryst. B27, 2152, 1971.Google Scholar
  16. 16.
    Fugler-Domenico, L., Russell, C.S., and Sapse, A.M. Struct. Chem. 1, 379, 1990.CrossRefGoogle Scholar
  17. 17.
    Schlegel, H.B. J. Comp. Chem.3, 214, 1982.CrossRefGoogle Scholar
  18. 18.
    Iverson, L.L., and Kelly, J.S. Biochem. Pharmacol. 24, 933, 1975.CrossRefGoogle Scholar
  19. 29.
    Krogsgaard-Larsen, R.J. Med. Chem. 24, 1377, 1981.CrossRefGoogle Scholar
  20. 20.
    Debler, E.A., and Lajtha, A. J. Neurochem. 48, 1851, 1987.PubMedCrossRefGoogle Scholar
  21. 21.
    Ramek, M. Int. J. Quantum Chem. Quantum Biol. Symp. 17, 45, 1990.CrossRefGoogle Scholar
  22. 22.
    Ramek, M. Structural Chem. 6, 1, 15, 1995.CrossRefGoogle Scholar
  23. 23.
    Ramek, M. Int. J. Quantum Chem. Quantum Biol. Symp. 21, 79, 1994.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.John Jay College and Graduate SchoolCity University of New YorkNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations