Theoretical Calculations on Small Amino Acids



The smallest amino acid, glycine, was among the first amino acids to be investigated by theoretical methods. Its small size makes it particularly suitable for ab initio treatment, even with large basis sets. The results of the ab initio geometry optimization of glycine (1) first suggested the existence of a state undiscovered by microwave spectroscopic studies. This state is the S (extended) state of glycine. Since only the C state (Figure 2.1) had been observed experimentally, it was concluded that the theoretical results were at fault (2). Accordingly, Sellers et al. (3) and Schafer et al. (4) used the gradient method of Pulay (5), with the 4-21G basis set at Hartree-Fock level and found indeed the S structure to be more stable than the C. This theoretical result was confirmed experimentally by the microwave study of Suenram and Lovas (6).


Polarization Function COOH Group Correlation Energy Molecular Orbital Calculation Small Amino Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vishveshwara, S., and Pople, J.A. J. Am. Chem. Soc. 99, 2422, 1977.CrossRefGoogle Scholar
  2. Schafer, L., Newton, S.Q., and Jiang, X. In Molecular Orbital Calculations For Biological Systems. Oxford University Press, New York, 1998.Google Scholar
  3. 3.
    Sellers, H.L., and Schafer, L. J. Am. Chem. Soc. 100, 7728, 1978.CrossRefGoogle Scholar
  4. 4.
    Schafer, L., Sellers, H.L., Lovas, F.J., and Suenram, R.D. J. Am. Chem. Soc. 102, 6566, 1980.CrossRefGoogle Scholar
  5. 5.
    Pulay, P., Fogarasi, G., Pang, E, and Boggs, J.E. J. Am. Chem. Soc. 101, 2550, 1979b.CrossRefGoogle Scholar
  6. 6.
    Suenram, R.D., and Lovas, E.J. J. Am. Chem. Soc. 102, 7180, 1980.CrossRefGoogle Scholar
  7. 7.
    Ramek, M., Cheng, V.K.W., Frey, ER., Newton, S.Q., and Schafer, L. J. Mol. Structure (THEOCHEM) 235, 1, 1991.CrossRefGoogle Scholar
  8. 8.
    Palla, P., Petrongolo, C., and Tomasi, J. J. Phys. Chem. 84, 435, 1980.CrossRefGoogle Scholar
  9. 9.
    Dykstra, C.E., Chiles, R.A., and Garrett, M.D. J. Comp. Chem. 2, 266, 1981.CrossRefGoogle Scholar
  10. 10.
    Laurence, P.R., and Thomson, C. Theor. Chem. Acta 58, 121, 1981.CrossRefGoogle Scholar
  11. 11.
    Masamura, M. J. Mol. Structure 152, 293, 1987.CrossRefGoogle Scholar
  12. 12.
    Frisch, M. et al. Gaussian 86. Carnegie Mellon University, Pittsburgh, PA, 1986.Google Scholar
  13. 13.
    Mezei, PG., and Csizmadia, I.G. Can. J. Chem. 55, 1181, 1977.CrossRefGoogle Scholar
  14. 14.
    Dunning, T.H., and Hay, P.J. In Schafer, H.F. III (ed.) Methods of Electronic Structure Theory. Plenum, New York, 1977.Google Scholar
  15. 15.
    Suenram, R.D., and Lovas, F.J. J. Mol. Spectroscopy 72, 237, 1978.CrossRefGoogle Scholar
  16. 16.
    Frey, R.F., Coffin, J., Newton, S.Q., Ramek, M., Cheng, V.K.W., Momany, F.A., and Schafer, L. J. Am. Chem. Soc. 114, 5369, 1992.CrossRefGoogle Scholar
  17. 17.
    Ramek, M., and Cheng, V.K.W. Int. J. of Quantum Chem., Quantum Biology Symp. 19, 15, 1992.CrossRefGoogle Scholar
  18. 18.
    Miettinen, J.K. Ann. Akad. Scient. Fennicae A60, 520, 1955.Google Scholar
  19. 19.
    Bruun, A., Ehinger, B., and Forsberg, A. Exp. Brain Res. 19, 239, 1974.PubMedCrossRefGoogle Scholar
  20. 20.
    Drabkina,T.M., Shabunova, I.A., Matyushkin, D.P., Gankina, E.S., and Efimova, I.I. Bull. Eksperim. Biol. Med. 101, 30, 1986.CrossRefGoogle Scholar
  21. 21.
    Hosli, L., Tebecis, A.K., and Filias, N. Brain Res. 16, 293, 1969.PubMedCrossRefGoogle Scholar
  22. 22.
    Sandberg, M., and Jacobson, I. J. Neurochem. 37, 1353, 1981.PubMedCrossRefGoogle Scholar
  23. 23.
    Coquet, D., and Korn, H. Neurosci. Lett. 84, 329, 1988.CrossRefGoogle Scholar
  24. 24.
    Ramek, M. Habilitationsschrift. Technische Universität Graz, Austria, 1989.Google Scholar
  25. 25.
    Ramek, M. J. Mol. Structure (THEOCHEM) 208, 301, 1990.CrossRefGoogle Scholar
  26. 26.
    Heal, G.A., Walker, P.D., Ramek, M., and Mezey, P.G. Can. J. Chem. 74, 1660, 1996.CrossRefGoogle Scholar
  27. 27.
    Mezey, P.G. Shape in Chemistry: An Introduction to Molecular Shape and Topology. VCH Publishers, New York, 1993.Google Scholar
  28. 28.
    Frisch, M.J., et al. Gaussian 92. Gaussian Inc., Pittsburgh, PA, 1992.Google Scholar
  29. 29.
    Mezey, P.G., Zimpel, Z., Warburton, P., Walker, P.D., Irvine, D.G., Dixon, D.G., and Greenberg, B. J. Chem. Inf. Comput. Sci. 36, 602, 1996.CrossRefGoogle Scholar
  30. 30.
    Godfrey, P.D., Firth, S., Hatherley, L.D., Brown, R.D., and Pierlot, A.P. J. Am. Chem. Soc. 115, 9687, 1993.CrossRefGoogle Scholar
  31. 31.
    Cao, M., Newton, S.Q., Pranata, J., and Schafer, L. J. Mol. Structure (THEOCHEM) 332, 251, 1995.CrossRefGoogle Scholar
  32. 32.
    Scarsdale, J.N., Van Alsenoy, C., Klimkowski, V.J., Schafer, L., and Momany, E.A. J. Am. Chem. Soc. 105, 3438, 1983.CrossRefGoogle Scholar
  33. 33.
    Jensen, E. J. Am. Chem. Soc. 114, 9533, 1992.CrossRefGoogle Scholar
  34. 34.
    Bouchonnet, S., and Hoppillard, Y. Org. Mass. Spectrom. 27, 71, 1992.CrossRefGoogle Scholar
  35. 35.
    Grese, R.P., Cerny, R.L., and Gross, M.L. J. Am. Chem. Soc. 111, 2835, 1989.CrossRefGoogle Scholar
  36. Stewart, J.J.P. MOPAC, QCPE Bull. 10, 86, 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.John Jay College and Graduate SchoolCity University of New YorkNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations