Oligopeptides That Are Anticancer Drugs



The peptidic bond is present in some molecules that have been found to possess anticancer activity. These oligopeptides have been termed “lexitropsins” or information-reading molecules. They are also antibiotics, and evidence from biochemical pharmacology indicates that they act to block the template function of DNA. They do so by binding selectively to adenine-thymine (AT) sequences in the minor groove (1).


Anticancer Drug Torsion Angle Proton Affinity Minor Groove Pyrrole Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hahn, F.E. In Antibiotics III. Mechanism of Action of Antimicrobial and Antitumor Agents. Corcoran, J.W., and Hahn, FE., (eds.) Springer-Verlag, N.Y., 1975.Google Scholar
  2. 2.
    Frederick, C.A., Grable, J., and Melia, M. Nature 309, 327, 1984.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop, J.M. Cell 42, 23, 1985.PubMedCrossRefGoogle Scholar
  4. 4.
    Suck, D., and Oefiner, C. Nature 321, 620, 1986.PubMedCrossRefGoogle Scholar
  5. 5.
    Julia, M., and Preau-Joseph, N. Compt. Rend. des Séances de L’Académie de Sciences 275, 1115, 1963.Google Scholar
  6. 5.
    Arcamone, F., Orezzi, P.G., Barbieri, W., Nicolella, V., and Penco, S. Gazz. Chim. Ital. 97, 1097, 1967.Google Scholar
  7. 7.
    Probst, G.W., Hoehn, M.M., and Woods, B.L. Antimicrob. Agents. Chemother. 789, 1965.Google Scholar
  8. 5.
    Takahashi, T., Sugawara, Y., and Susuki, M. Tetrahedron Lett. 1873, 1972.Google Scholar
  9. 9.
    Krowicki, K., and Lown, J.W. J. Org. Chem. 52, 3493, 1987.CrossRefGoogle Scholar
  10. 10.
    Kissinger, K., Krowicki, K., Dabrowiak, J.C., and Lown, J.W. Biochemistry 26, 5590, 1987.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee, M.S., Pon, R.T., Krowicki, K., and Lown, J.W. J. Biomol. Struct. Dyn. 5, 939, 1988.PubMedCrossRefGoogle Scholar
  12. 12.
    Lown, J.W. Anti-Cancer Drug Design 3, 25, 1988.PubMedGoogle Scholar
  13. 13.
    Lee, M., Shea, R.G., Hartley, J.A., Kissinger, K., Pon, R.T., Vesnaver, G., Breslauer, K.J., Dabrowiak, J.C., and Lown, J.W. J. Am. Chem. Soc. 111, 345, 1989.CrossRefGoogle Scholar
  14. 14.
    Schultz, P.G., and Dervan, P.B. J. Am. Chem. Soc. 105, 7748, 1983.CrossRefGoogle Scholar
  15. 15.
    Berman, H.M., Neidle, S., Zimmer, C., and Thrum, H. Biochem. Biophys. Acta 561, 124, 1979.PubMedCrossRefGoogle Scholar
  16. 16.
    Gurskaya, G.V., Grokhovsky, S.L., Zhuze, A.L., and Gottikh, B.P. Biochem. Biophys. Acta 563, 336, 1979.PubMedCrossRefGoogle Scholar
  17. 17.
    Remers, W.A., and Iyengar, B.S. In Cancer Chemotherapeutic Agents, Foye,W.O., (ed.) American Chemical Society, Washington, DC, 1995.Google Scholar
  18. 18.
    Zimmer, C., Kakiuchi, N., and Guschlbauer, W. Nucl. Acids. Res. 10, 1721, 1982.PubMedCrossRefGoogle Scholar
  19. 19.
    Zimmer, C., Marck, C., and Guschlbauer, W. FEBS Lett. 154, 156, 1983.PubMedCrossRefGoogle Scholar
  20. 20.
    Goodsel, D., and Dickerson, R.E. J. Med. Chem. 29, 727, 1986.CrossRefGoogle Scholar
  21. 21.
    Zakrewska, K., Lavery, R., and Pullman, B. J. Biomol. Struct. Dyn. 4, 833, 1987.CrossRefGoogle Scholar
  22. 22.
    Pullman, B. Adv. Drug. Res. 18, 1, 1989.Google Scholar
  23. 23.
    Mazurek, R, Feng, W., Shukla, K., Sapse, A.M., and Lown, J.B. J. Biomol. Struc. Dyn. 9, 299, 1991.CrossRefGoogle Scholar
  24. 24.
    Martin, J.C., Wartell, R.M., and O’Shea, D.C. Proc. Natl. Acad. Sci. USA, 75, 5483, 1978.PubMedCrossRefGoogle Scholar
  25. 25.
    Patel, D.J. Eur. J. Biochem. 99, 369, 1979.PubMedCrossRefGoogle Scholar
  26. 26.
    Lown, J.W., Krowicki, B., Bhat, U.G., Skorogaty, A., Ward, B., and Dabrowiak, J.C. Biochemistry 25, 7408, 1986.PubMedCrossRefGoogle Scholar
  27. 27.
    Bailly, C., Rommery, N., Houssin, R., and Hemchart, J.P. J. Pharm. Sci. 78, 910, 1989.PubMedCrossRefGoogle Scholar
  28. 28.
    Sapse, A.M., Feng, W., Fugler-Domenico, L., Kabir, S., Joseph, T., and Lown, J.W. J. Biomol. Struct. Dyn. 10, 4, 709, 1993.PubMedCrossRefGoogle Scholar
  29. 29.
    Kabir, S., and Sapse, A.M. J. Comp. Chem. 12, 1142, 1991.CrossRefGoogle Scholar
  30. 30.
    Zimmerman, J., Rao, K.E., Joseph, T., Sapse, A.M., and Lown, J.W. J. Biomol. Struct. Dyn. 9, 599,1991.CrossRefGoogle Scholar
  31. 31.
    Spatola, A.F. Chemistry and Biochemistry of Amino Acids, Peptides and Proteins, 7, 267, 1983.Google Scholar
  32. 32.
    Scheibye, S., Pederson, B.S., and Lawesson, S.O. Bull. Soc. Chim. Belg. 87, 229, 1978.CrossRefGoogle Scholar
  33. 33.
    Bartlett, P.A., Spear, K.L., and Jacobsen, N.E. Biochemistry 21, 1608, 1982.PubMedCrossRefGoogle Scholar
  34. 34.
    Kopka, M.L., Yoon, C., Goodsell, D., Pjura, P, and Dickerson, R.E. Proc. Natl. Acad. Sci. USA 82, 1376, 1985.PubMedCrossRefGoogle Scholar
  35. 35.
    Coll, M., Frederick, C.A., Wang, A.H.J., and Rich, A. Proc. Natl. Acad. Sci. USA 84, 8385, 1987.PubMedCrossRefGoogle Scholar
  36. 36.
    Sapse, A.M., Kabir, S., and Snyder, G. THEOCHEM 339, 227, 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.John Jay College and Graduate SchoolCity University of New YorkNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations