Advertisement

Tight Turns in Proteins

Chapter

Abstract

Polypeptides often exhibit folded conformations in which the chain reverses its direction over a few residues. Many proteins contain such sequences. In addition to proteins, such conformations have been found in oligopeptide hormones (see Chapter 9) and antibiotics, such as gramicidin SA. Reverse turns, also called tight turns, together with helices and beta sheets, elements of the secondary structure of proteins, control their tertiary structure by their variations. The tight turns are the most prevalent type of nonrepetitive structure recognized. As opposed to helices and beta structures, which have the property that successive residues feature similar φ and ψ angles, the nonrepetitive fragments of structure have different φ and ψ angles for each residue, so the residue position within the structure influences it more than in a repetitive structure (1).

Keywords

Dihedral Angle Stability Order Tobacco Necrosis Virus Beta Structure Beta Turn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Richardson, J.S. In Advances in Protein Chemistry, Vol 34, Anfinsen, C.B., Edsall, J.T., and Richards, F.M., (eds.) Academic Press, New York, 1981.Google Scholar
  2. 2.
    Kabsch, W., and Sanders, C. Biopolymers 22, 2577, 1983.PubMedCrossRefGoogle Scholar
  3. 3.
    Milner-White, E.J., and Poet, R. Trends Biochem. Sci. 12, 189, 1987.CrossRefGoogle Scholar
  4. 4.
    Sibanda, B.L., and Thornton, J.M. Nature 316, 170, 1985.PubMedCrossRefGoogle Scholar
  5. 5.
    Venkatachalam, C.M. Biopolymers 6, 1425, 1968.PubMedCrossRefGoogle Scholar
  6. 6.
    Chou, P.Y., and Fasman, G.D. J. Mol. Biol. 115, 135, 1977.PubMedCrossRefGoogle Scholar
  7. 7.
    Lewis, P.N., Momany, F.A., and Scheraga, H.A. Biochem. Biophys. Acta. 303, 211, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Crawford, J.L., Lipscomb, W.N., and Schellman, C.G. Proc. Natl. Acad. Sci. USA 70, 538, 1973.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuntz, I.D. J. Am. Chem. Soc. 94, 4009, 1972.PubMedCrossRefGoogle Scholar
  10. 10.
    Rose, G.D. Nature 272, 586, 1978.PubMedCrossRefGoogle Scholar
  11. 11.
    Nemethy, G., and Printz, M.P. Macromolecules 6, 755, 1972.CrossRefGoogle Scholar
  12. 12.
    Matthews, B.W. Macromolecules 6, 818, 1972.CrossRefGoogle Scholar
  13. 13.
    Jones, T.A., and Liljas, L. J. Mol. Biol. 177, 735, 1984.PubMedCrossRefGoogle Scholar
  14. 14.
    Madison, V., Atreyi, M., Deber, C.M., and Blout, E.R. J. Am. Chem. Soc. 96, 6725, 1974.PubMedCrossRefGoogle Scholar
  15. 15.
    Pease, L.G., and Watson, C. J. Am. Chem. Soc. 100, 1279, 1978CrossRefGoogle Scholar
  16. 16.
    Spatola, A.F., Anwer, M.K., Rockwell, A.L., and Gierasch, L.M. J. Am. Chem. Soc. 108, 825, 1986.CrossRefGoogle Scholar
  17. 17.
    Avignon, M., Huong, P.V., Lascombe, J., Lascombe, M., Marraud, M., and Neel, J. Biopolymers 8, 69, 1969.CrossRefGoogle Scholar
  18. 18.
    Gibson, K.D., and Scheraga, H.A. Proc. Natl. Acad. Sci. USA 58, 420, 1967.PubMedCrossRefGoogle Scholar
  19. 19.
    Möhle, K., Gusmann, M., and Hofmann, H.J. J. Comp. Chem. 18, 1716, 1997.CrossRefGoogle Scholar
  20. 20.
    Stanfield, R.L., Fieser, T.M., Lerner, R.A., and Wilson, I.A. Science 248, 712, 1990.PubMedCrossRefGoogle Scholar
  21. 21.
    Marshall, G.R. Curr. Opin. Struct. Biol. 2, 904, 1992.CrossRefGoogle Scholar
  22. 22.
    Nikiforovich, G., and Marshall, G.R. Int. J. Pep. Prot. Res. 42, 171, 1993.CrossRefGoogle Scholar
  23. 23.
    Nikiforovich, G., and Marshall, G.R. Int. J. Pep. Prot. Res. 42, 181, 1993.CrossRefGoogle Scholar
  24. 24.
    Scholnik, J., and Kolinski, A.J. J. Mol. Biol. 221, 499, 1991.Google Scholar
  25. 25.
    Soman, K.V., Karini, A., and Case, D.A. Biopolymers 31, 1351, 1991.PubMedCrossRefGoogle Scholar
  26. 26.
    Dill, K.A., Fiebig, K.M., and Chan, H.S. Proc. Natl. Acad. Sci. USA 90, 1942, 1993.PubMedCrossRefGoogle Scholar
  27. 27.
    Perczel, A., McAllister, M.A., Csaszar, R, and Csizmadia, I.G. J. Am. Chem. Soc. 115, 4849, 1993.CrossRefGoogle Scholar
  28. 28.
    Bohm, H.J. J. Am. Chem. Soc. 115, 6152, 1993.CrossRefGoogle Scholar
  29. 29.
    Frey, R.F., Coffin, J., Newton, S.Q., Ramek, M., Cheng, V.K.W., Momany, F.A., and Schafer, L. J. Am. Chem. Soc. 114, 5369, 1992.CrossRefGoogle Scholar
  30. 30.
    Wilmot, C.M., and Thornton, J.M. Prot. Eng. 3, 479, 1990.CrossRefGoogle Scholar
  31. 31.
    Yan, Y., Erickson, B.W., and Tropsha, A. J. Am. Chem. Soc. 117, 7592, 1995.CrossRefGoogle Scholar
  32. 32.
    Osapay, K., Young, W.S., Bashford, C., Brooks III, C.L., and Case, D.A. J. Phys. Chem. 100, 2698, 1996.CrossRefGoogle Scholar
  33. 33.
    Maxfield, F.R., Bandekar, J., Krimm, S., Evans, D.J., Leach, S.J., Nemethy, G., and Scheraga, H.A. Macromolecules 14, 997, 1981.CrossRefGoogle Scholar
  34. 34.
    Nemethy, G., McQuie, J.R., Pottle, M.S., and Scheraga, H.A. Macromolecules 14, 975, 1981.CrossRefGoogle Scholar
  35. 35.
    Woody, R. InPeptides, Polypeptides and Proteins. Blout, E.R., Bovey, Goodman, M., and Lotan, N., (eds.) Wiley, New York, 1974.Google Scholar
  36. 36.
    Sathyanarayana, B.K., and Applequist, J. Int. J. Pep. Prot. Res. 27, 86, 1986.CrossRefGoogle Scholar
  37. 37.
    Applequist, J. J. Chem. Phys. 70, 4332, 1979.CrossRefGoogle Scholar
  38. 38.
    Applequist, J. Biopolymers 20, 387, 1981.CrossRefGoogle Scholar
  39. 39.
    Applequist, J. Biopolymers 20, 2311, 1981.CrossRefGoogle Scholar
  40. 40.
    Applequist, J. Biopolymers 21, 799, 1982.Google Scholar
  41. 41.
    Caldwell, J.W., and Applequist, J. Biopolymers 23, 1891, 1984.PubMedCrossRefGoogle Scholar
  42. 42.
    Sathyanarayana, B.K., and Applequist, J. Int. J. Pep. Res. 26, 518, 1985.CrossRefGoogle Scholar
  43. 43.
    Ramachandran, G.N., and Sasisekharan, V. Adv. Protein Chem. 23, 283, 1968.PubMedCrossRefGoogle Scholar
  44. 44.
    Nemethy, G., and Printz, M.P. Macromolecules, 6, 755, 1972.CrossRefGoogle Scholar
  45. 45.
    Bandekar, J., and Kuirm, S. Int. J. Pept. Prot. Res. 26, 407, 1985.Google Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  1. 1.John Jay College and Graduate SchoolCity University of New YorkNew YorkUSA
  2. 2.Rockefeller UniversityNew YorkUSA

Personalised recommendations