Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 507 Accesses

Abstract

All the position tracking controllers presented in Chapter 3 required fullstate feedback (FSFB). That is, the control implementation requires the measurement of the position and velocity of the mechanical system. Since the cost of implementing a FSFB controller for achieving position tracking would typically include the cost of motion sensors, this chapter addresses the problem of position tracking under the constraint of minimizing the sensor count (i.e., elimination of velocity measurements). Hence, we are motivated to investigate means of constructing velocity signal surrogates for use in closed-loop, position tracking control strategies, i.e., output feedback (OFB) controllers. A standard approach for removing velocity measurements is to apply the so-called backwards difference algorithm to the position measurements. Even though this method of eliminating velocity may provide reasonable performance, the use of this discrete-time velocity approximation is not satisfying from a theoretical viewpoint since the dynamics of the backwards difference algorithm are normally not included during the closed-loop stability analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arimoto, V. Parra-Vega, and T. Naniwa, A Class of Linear Velocity Observers for Nonlinear Mechanical Systems, Asian Control Conference, pp. 633–636, Tokyo, Japan, 1994.

    Google Scholar 

  2. H. Berghuis and H. Nijmeijer, Observer Design in the Tracking Control Problem for Robots, Proceedings of the IFAC Symposium NOLCOS, pp. 588–593, Bordeaux, France, June 1992.

    Google Scholar 

  3. H. Berghuis and H. Nijmeijer, Robust Control of Robots via Linear Estimated State Feedback, IEEE Transactions on Automatic Control, Vol. 39, No. 10, pp. 740–754, Dec. 1993.

    MathSciNet  Google Scholar 

  4. H. Berghuis and H. Nijmeijer, A Passivity Approach to Controller-Observer Design for Robots, IEEE Transactions on Robotics and Automation, Vol. 9, No. 6, pp. 740–754, Dec. 1993.

    Article  Google Scholar 

  5. T. Burg, D. Dawson, J. Hu, and M. de Queiroz, An Adaptive Partial State Feedback Controller for RLED Robot Manipulators, IEEE Transactions on Automatic Control, Vol. 41, No. 7, pp. 1024–1031, July 1996.

    Article  MATH  Google Scholar 

  6. T. Burg, D. Dawson, and P. Vedagarbha, A Redesigned DCAL Controller without Velocity Measurements: Theory and Demonstration, Robotica, Vol. 15, pp. 337–346, 1997.

    Article  Google Scholar 

  7. I. Burkov, Asymptotic Stabilization of Nonlinear Lagrangian Systems without Measuring Velocities, International Symposium on Active Control in Mechanical Engineering, Lyon, France, 1993.

    Google Scholar 

  8. I. V. Burkov, Mechanical System Stabilization via Differential Observer, IFAC Conference on System Structure and Control, pp. 532–535, Nantes, France, 1995.

    Google Scholar 

  9. C. Canudas de Wit, K. Aström, and N. Fixot, Computed Torque Control via a Nonlinear Observer, International Journal of Adaptive Control and Signal Processing, Vol. 4, No. 6, pp. 443–452, 1990.

    Article  MATH  Google Scholar 

  10. C. Canudas de Wit and J. Slotine, Sliding Observers for Robot Manipulators, Automatica, Vol. 27, No. 5, pp. 859–864, May 1991.

    Article  MathSciNet  Google Scholar 

  11. C. Canudas de Wit and N. Fixot, Robot Control Via Robust Estimated State Feedback, IEEE Transactions on Automatic Control, Vol. 36, No. 12, pp. 1497–1501, Dec. 1991.

    Article  MATH  Google Scholar 

  12. C. Canudas de Wit, N. Fixot, and K. Aström, Trajectory Tracking in Robot Manipulators via Nonlinear Estimated State Feedback, IEEE Transactions on Robotics and Automation, Vol. 8, No. 1, pp. 138–144, Feb. 1992.

    Article  Google Scholar 

  13. C. Canudas de Wit and N. Fixot, Adaptive Control of Robot Manipulators via Velocity Estimated Feedback, IEEE Transactions on Automatic Control, Vol. 37, No. 8, pp. 1234–1237, Aug. 1992.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Colbaugh, E. Barany, and K. Glass, Global Stabilization of Uncertain Manipulators Using Bounded Controls, Proceedings of the American Control Conference, pp. 86–91, Albuquerque, NM, June 1997.

    Google Scholar 

  15. Integrated Motion, Inc., Direct Drive Manipulator Research and Development Package Operations Manual, Berkeley, CA, 1992.

    Google Scholar 

  16. M. Erlic and W. Lu, Manipulator Control with an Exponentially Stable Velocity Observer, Proceedings of the American Control Conference, pp. 1241–1242, Chicago, IL, June 1992.

    Google Scholar 

  17. M. Erlic and W. Lu, A Reduced-Order Adaptive Velocity Observer for Manipulator Control, Proceedings of the IEEE Conference on Robotics and Automation, pp. 328–333, Atlanta, GA, May 1993.

    Google Scholar 

  18. L. Hsu and F. Lizarralde, Variable Structure Adaptive Tracking Control of Robot Manipulators without Joint Velocity Measurement, IF AC World Congress, pp. 145–148, Sydney, Australia, July 1993.

    Google Scholar 

  19. T. Kailaith, Linear Systems, Englewood Cliffs, NJ: Prentice Hall, 1980.

    Google Scholar 

  20. K. Kaneko and R. Horowitz, Repetitive and Adaptive Control of Robot Manipulators with Velocity Estimation, IEEE Transactions on Robotics and Automation, Vol. 13, No. 2, pp. 204–217, Apr. 1997.

    Article  Google Scholar 

  21. R. Kelly, A Simple Setpoint Controller by Using Only Position Measurements, Preprint IFAC World Congress, pp. 289–293, Sydney, Australia, July 1993.

    Google Scholar 

  22. M. Krstić, I. Kanellakopoulos, and P. Kokotović, Nonlinear and Adaptive Control Design, New York: John Wiley & Sons, Inc., 1995.

    Google Scholar 

  23. F. L. Lewis, C. T. Abdallah, and D. M. Dawson, Control of Robot Manipulators, New York, NY: Macmillan Publishing Co., 1993.

    Google Scholar 

  24. S. Y. Lim, D. M. Dawson, and K. Anderson, Re-examining the Nicosia-Tomei Robot Observer-Controller from a Backstepping Perspective, IEEE Transactions on Control Systems Technology, Vol. 4, No. 3, pp. 304–310, May 1996.

    Article  Google Scholar 

  25. S. Y. Lim, Partial State Feedback Link Position Tracking Controllers for Robotic Manipulator Systems, Ph. D. Dissertation, Department of Electrical and Computer Engineering, Clemson University, Aug. 1994.

    Google Scholar 

  26. A. Loria, Global Tracking Control of One Degree of Freedom Euler-Lagrange Systems Without Velocity Measurements, European Journal of Control, Vol. 2, No. 2, pp.144–151, June 1996.

    MathSciNet  MATH  Google Scholar 

  27. S. Nicosia and P. Tomei, Robot Control by Using Only Joint Position Measurements, IEEE Transactions on Automatic Control, Vol. 35, No. 9, pp. 1058–1061, Sept. 1990.

    Article  MathSciNet  MATH  Google Scholar 

  28. S. Nicosia, A. Tornambe, and P. Valigi, Experimental Results in State Estimation of Industrial Robots, Proceedings of the IEEE Conference on Decision and Control, pp. 360–365, Honolulu, HI, Dec. 1990.

    Google Scholar 

  29. R. Ortega, A. Loria, and R. Kelly, A Semiglobally Stable Output Feedback PI2D Regulator for Robot Manipulators, IEEE Transactions on Automatic Control, Vol. 40, No. 8, pp. 1432–1436, Aug. 1995.

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Qu, D. Dawson, J. Dorsey, and J. Duffle, Robust Estimation and Control of Robotic Manipulators, Robotica, Vol. 13, pp. 223–231, 1995.

    Article  Google Scholar 

  31. P. Vedagarbha, T. Burg, J. Hu, and D. Dawson, Development and Demonstration of a New Class of Adaptive Partial State Feedback Controllers for Electric Machines, Mechatronics — An International Journal, Vol. 6, No. 6, pp. 691–727, 1996.

    Google Scholar 

  32. J. Yuan and Y. Stepanenko, Robust Control of Robotic Manipulators without Velocity Measurements, International Journal of Robust and Nonlinear Control, Vol. 1, pp. 203–213, 1991.

    Article  MATH  Google Scholar 

  33. F. Zhang, D. M. Dawson, M. S. de Queiroz, and W. Dixon, Global Adaptive Output Feedback Tracking Control of Robot Manipulators, Proceedings of the IEEE Conference on Decision and Control, pp. 3634–3639, San Diego, CA, Dec. 1997.

    Google Scholar 

  34. W. Zhu, H. Chen, and Z. Zhang, A Variable Structure Robot Control Algorithm with an Observer, IEEE Transactions on Robotics and Automation, Vol. 8, No. 4, pp. 486–492, Aug. 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Queiroz, M.S., Dawson, D.M., Nagarkatti, S.P., Zhang, F. (2000). Output Feedback Tracking Controllers. In: Lyapunov-Based Control of Mechanical Systems. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1352-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1352-9_4

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7108-6

  • Online ISBN: 978-1-4612-1352-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics