Infiltration Processes in Composite Materials Manufacturing: Modeling and Qualitative Results

  • Angiolo Farina
  • Luigi Preziosi
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)


This chapter deals with those composite materials manufacturing processes, e.g., resin transfer molding and structural resin injection molding, consisting in the injection of a liquid into a porous medium made of reinforcing elements. In these processes the infiltration is coupled with phenomena affecting both the rheological properties of the liquid (thermal variation and curing) and the mechanical properties of the solid (deformations). We illustrate the general model and the analytical results obtained so far.


Porous Medium Injection Moulding Free Boundary Problem Solid Volume Fraction Infiltration Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Al-Hamdan, A., Rudd, C.D., and Long, A.C., Dynamic core movements during liquid moulding of sandwich structures, Composites A, 29A, 273–82 (1998).CrossRefGoogle Scholar
  2. 2.
    Ambrosi, D., and Preziosi, L., Modelling matrix injection through elastic porous preforms, Composites A, 29A, 5–18 (1998).CrossRefGoogle Scholar
  3. 3.
    Ambrosi D., and Preziosi L., Modelling injection moulding processes with deformable porous preform, SIAM J. Appl. Math., in press.Google Scholar
  4. 4.
    Antonelli, D., and Farina, A., Injection moulding: Mathematical modelling and numerical simulations, Composites A, in press.Google Scholar
  5. 5.
    Baichen, L., Bickerton, S., and Advani, S.G., Modelling and simulation of resin transfer moulding (RTM)—Gate control, venting and dry spot prediction, Composites A,27A, 135–41 (1996).Google Scholar
  6. 6.
    Beavers, G.S., and Joseph, D.D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197–207 (1967).CrossRefGoogle Scholar
  7. 7.
    Billi, L., Incompressible flows through porous media with temperature variable parameters, Nonlinear Analysis, Theory, Math and Appl.,31, 363–383 (1998).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Billi, L., Non-isothermal flows in porous media with curing, EJAM, 8, 623–637.Google Scholar
  9. 9.
    Billi, L., and Farina, A., Unidirectional infiltration in deformable porous media: Mathematical modelling and self-similar solution, Quart. Appl. Math., in press.Google Scholar
  10. 10.
    Blest, D.C., Duffy, B.R., McKee, S., and Marshall, P., A model of the fluid dynamics of resin-film infusion, Strathclyde Mathematics Research Reports, N. 3 (1995).Google Scholar
  11. 11.
    Blest, D.C., Duffy, B.R., McKee, S., and Zulkifle, A.K., Curing simulation of thermoset composites, Strathclyde Mathematics Research Reports, N. 37 (1998).Google Scholar
  12. 12.
    Bowen, R.M., Incompressible porous media models by use of the theory of mixtures, Int. J. Engng. Sci., 18, 1129–48 (1980).zbMATHCrossRefGoogle Scholar
  13. 13.
    Bowen, R.M., Theory of mixtures, in Continuum Physics, 3, edited by A.C. Eringen, Academic Press (1976).Google Scholar
  14. 14.
    Bruschke, M.V., and Advani, S.G., A finite element control volume approach to mould filling in anisotropic porous media, Polymer Compos., 11, 398–405 (1990).CrossRefGoogle Scholar
  15. 15.
    Bruschke, M.V., and Advani, S.G., A numerical approach to model non-isothermal viscous flow through fibrous media with free surfaces, Int. J. Num. Meth. Fluids, 19, 575–603 (1994).zbMATHCrossRefGoogle Scholar
  16. 16.
    Calhoun, D.R., Yalvaç, S., Wetters, D.G., Wu, C.H., Wang, T.J., Tsai, J.S., and Lee, L.J., Mold filling analysis in resin transfer molding, Polymer Compos., 17, 251–64 (1996).CrossRefGoogle Scholar
  17. 17.
    Farina, A., Cocito, P., and Boretto, G., Flow in deformable porous media: Modelling and simulations of the compression moulding process, Mathl. Comput. Modelling, 26, 1–15 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Farina, A., and Preziosi, L., Non—isothermal injection moulding with resin cure and preform deformability, Composites A, submitted.Google Scholar
  19. 19.
    Fasano, A., and Primicerio, M., Free boundary problems for nonlinear parabolic equations, J. Math. Anal. Appl., 72, 247–73 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Gonzalez-Romero, V.M., and Macosko, C.W., Process parameters estimation for structural reaction injection moulding, Polym. Engng. Sci., 30, 142–6 (1990).CrossRefGoogle Scholar
  21. 21.
    Hammami, A., Gauvin, R., and Trochu, F., Modelling the edge effect in liquid composites molding, Composites A, 29A, 603–9 (1998).CrossRefGoogle Scholar
  22. 22.
    Han, K., Lee, L.J., and Liu, M.J., Fiber mat deformation in liquid composite moulding. II: Modelling, Polymer Compos., 14, 151–60 (1993).CrossRefGoogle Scholar
  23. 23.
    Hornung, U., Homogenization and Porous Media, Springer (1996).Google Scholar
  24. 24.
    Isayev, A.I., Injection and Compression Moulding Fundamentals, Marcel Dekker (1987).Google Scholar
  25. 25.
    Jäger, W., and Mikelic, A., On the boundary conditions at the contact interface between a porous medium and a free fluid, Annah della Scuola Normale Superiore di Pisa, Serie IV, 23, 403–65 (1996).zbMATHGoogle Scholar
  26. 26.
    Joseph, D.D., Fluid Dynamics of Viscoelastic Liquids, Springer—Verlag (1990).zbMATHGoogle Scholar
  27. 27.
    Kim, Y.R., McCarthy, S.P., and Fanucci, J.P., Compressibility and relaxation of fiber reinforcements during composite processing, Polymer Compos., 12, 13–9 (1991).CrossRefGoogle Scholar
  28. 28.
    Lacoste, E., Aboulfatah, M., Danis, M., and Girot, F., Numerical simulation of the infiltration of fibrous preforms by pure metal, Metall. Trans., 24A, 2667–78 (1993).Google Scholar
  29. 29.
    Lacoste, E., Danis, M., Girot, F., and Quennisset, J.M., Numerical simulation of the injection moulding of thin parts by liquid metal infiltration of fibrous preform, Mater. Sci. Eng. A, 135, 45–9 (1991).CrossRefGoogle Scholar
  30. 30.
    Ladyzenskaja, O.A., Solonnikov, V.A., and Ural’ceva, N.N., Linear and Quasilinear Equations of Parabolic Type, AMS Translations of Mathematical Monographs 23 (1968).Google Scholar
  31. 31.
    Lin, M., Hahn, T., and Huh, H., A finite element simulation of resin transfer molding based on partial nodal saturation and implicit time integration, Composites A, 29A, 541–50 (1998).CrossRefGoogle Scholar
  32. 32.
    Liu, I.S., On chemical potential and incompressible porous media, J. Mech., 19, 327–42 (1980).Google Scholar
  33. 33.
    Mallik, P.K., Fiber-Reinforced Composites: Materials Manufacturing and Design, Marcel Dekker (1988).Google Scholar
  34. 34.
    Markov, K., and Preziosi L., eds., Heterogeneous Solids: Micromechanics,Modelling Methods and Simulations, Birkhäuser (1999).Google Scholar
  35. 35.
    Mortensen, A., Masur, L.J., Cornie, J.A., and Flemings, M.C., Infiltration of fibrous preforms by a pure metal: Part I. Theory, Metall. Trans., 20A, 2535–47 (1989).Google Scholar
  36. 36.
    Müller, I., Rational thermodynamics of mixtures of fluids, in Thermodynamic and Constitutive Equations, Lecture Notes in Physics 228, edited by G. Grioli, Springer-Verlag (1985).Google Scholar
  37. 37.
    Munaf, D., Wineman, S., Rajagopal, K.R., and Lee, D.W., A boundary value problem in ground water motion analysis-Comparison of the prediction based on Darcy’s law and the continuum theory of mixtures, Mat. Models Methods Appl. Sci., 3, 231–48 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Parker, K.H., Metha, R.V., and Caro, C.G., Steady flow in porous, elastic deformable materials, Trans. ASME E: J. Appl. Mech., 54, 794–800 (1987).CrossRefGoogle Scholar
  39. 39.
    Preziosi, L., The theory of deformable porous media and its applications to composite materials manufacturing, Surv. Math. Ind., 6, 167–214 (1996).MathSciNetzbMATHGoogle Scholar
  40. 40.
    Preziosi, L., Joseph, D.D., and Beavers, G.S., Infiltration in initially dry, deformable porous media, Int. J. Multiphase Flows, 22, 1205–22 (1996).zbMATHCrossRefGoogle Scholar
  41. 41.
    Puslow, D., and Child, R., Autoclave moulding of carbon-fiber reinforcing epoxies, Composites, 17, 127–36 (1986).CrossRefGoogle Scholar
  42. 42.
    Rajagopal, K.R., and Tao, L.Mechanics of Mixtures, World Scientific (1995).zbMATHGoogle Scholar
  43. 43.
    Rajagopal, K.R., Wineman, A.S., and Gandhi, M.V., On boundary conditions for a certain class of problems in mixture theory, Int. J. Eng. Sci., 24, 1453–63 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    Rudd, C.D., and Kendall, K.N., Towards a manufacturing technology for high-volume production of components, Proc. Inst. Mech. Eng., 206, 77–91 (1992).Google Scholar
  45. 45.
    Rudd, C.D., Long, A.C., Kendall, K.N., and Mangin, C.G.E.Liquid moulding Technologies, Woodhead Publishing Limited (1997).CrossRefGoogle Scholar
  46. 46.
    Rudd, C.D., Owen, M.J., and Middleton, V., Effects of process variables on cycle time during resin transfer moulding for high volume manufacture, Mater. Sci. Tech., 6, 656–65 (1990).CrossRefGoogle Scholar
  47. 47.
    Saffman, P.G., On the boundary condition at the interface of a porous medium, Studies in Appl. Math., 1, 93–101 (1971).Google Scholar
  48. 48.
    Saunders, R.A., Lekakou, C., and Bader, M.G., Compression of fiber plain woven cloths in the processing of polymer composites, Composites A, 29A, 443–54 (1998).CrossRefGoogle Scholar
  49. 49.
    Sommer, J.L., and Mortensen, A., Forced unidirectional infiltration in deformable porous media, J. Fluid Mech., 311, 193–215 (1996).CrossRefGoogle Scholar
  50. 50.
    Tao, L., and Rajagopal, K.R., On boundary conditions in mixture theory, in Recent Advances in Elasticity and Viscoelasticity, edited by K.R. Rajagopal, World Scientific (1994).Google Scholar
  51. 51.
    Trevino, L., Rupel, K., Young, W.B., Liu, M.J., and Lee, L.J., Analysis of resin injection moulding in moulds with preplaced fiber mats. I: Permeability and compressibility measurements, Polymer Compos., 12, 20–9 (1991).CrossRefGoogle Scholar
  52. 52.
    Upadhyay, R.K., and Liang, E.W., Consolidation of advanced composites having volatile generation, Polymer Compos., 12, 417–29 (1991).CrossRefGoogle Scholar
  53. 53.
    Yoo, Y.E., and Lee, W. I., Numerical simulation of resin transfer mold filling process using the boundary element method, Polymer Compos., 17, 368–74 (1996).CrossRefGoogle Scholar
  54. 54.
    Young, W.B., Three—dimensional non—isothermal mold filling simulations in resin transfer mouldingPolymer Compos., 15, 118–27 (1994).CrossRefGoogle Scholar
  55. 55.
    Young, W.B., Han, K., Fong, L.H., Lee, L.J., and Liu, M.J., Flow simulation in molds with preplaced fiber mats, Polymer Compos., 12, 391–403 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Angiolo Farina
    • 1
  • Luigi Preziosi
    • 2
  1. 1.Dipartimento di Ingegneria Aeronautica e SpazialePolitecnico di TorinoTorinoItaly
  2. 2.Dipartimento di MatematicaPolitecnico di TorinoTorinoItaly

Personalised recommendations