Sedimentation in Coal-Water Slurry Pipelining

  • Fabio Rosso
Part of the Modeling and Simulation in Science, Engineering and Technology book series (MSSET)

Abstract

In this chapter we present an overview of recent investigations on the problem of sedimentation related to the pipelining of a coal-water slurry. The two main aspects of the problem are the determination of the sedimentation velocity and the understanding and modeling of the dynamics of the sedimentation bed that accumulates on the bottom of the pipe. The analysis is carried out using a combination of suggestions dictated by experimental evidence and suitable mathematical techniques. The result is a model that appears to be both easily manageable and flexible. Predictions of the model are compared with experiments finding a remarkable agreement with the available data.

Keywords

Porosity Glycerine Transportation Sedimentation Settling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Acharya, A., Mashelkar, R.A., and Ulbrecht, J., Flow of inelastic and viscoelastic fluids past a sphere I. Drag coefficient in creeping and boundaty-layer flows, Rheol. Acta, 15, 454–470 (1976).CrossRefGoogle Scholar
  2. 2.
    Adachi, K., and Yoshioka, N., On creeping flow of a viscoplastic fluid past a circular cylinder, Chem. Eng. Sci., 28, 215–26 (1973).CrossRefGoogle Scholar
  3. 3.
    Andres, V.T., Equilibrium and motion of a sphere in a viscoplastic fluid, Soviet Phis. Doklady, 5, 723–26 (1960).MathSciNetMATHGoogle Scholar
  4. 4.
    Ansley, R.W., and Smith, T.N., Motion of spherical particles in a Bingham plastic, AIChE J., 13, 1193–6 (1967).CrossRefGoogle Scholar
  5. 5.
    Astarita, G., The engineering reality of yield stress, J. Rheol., 34, 275–7 (1990).CrossRefGoogle Scholar
  6. 6.
    Beris, A. N., Tsamopoulos, J.A., Armstrong, R.C., and Brown, R.A., Creeping motion of a sphere through a Bingham plastic, J. Fluid Mech., 158, 219–44 (1985).MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Bertero, M., De Mol, C., and Pike, E.R., Linear inverse problems with discrete data. 1: General formulation and singular system analysis, Inverse Problems, 1, 301–30 (1985).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Bertero, M., De Mol, C., and Pike, E.R., Linear inverse problems with discrete data. 2: Stability and regularization, Inverse Problems 14, 573–94 (1988).CrossRefGoogle Scholar
  9. 9.
    Brenner, H., Dynamics of particles in a viscous fluid, Chem. Eng. Sci., 17, 435–9 (1962).CrossRefGoogle Scholar
  10. 10.
    Brookes, G.F., and Whitmore, R.L., Drag forces in Bingham plastics, Rheol. Acta, 8, 472–80 (1969).CrossRefGoogle Scholar
  11. 11.
    Carniani, E., Ercolani, D., Meli, S., Pellegrini, L., and Primicerio, M., Shear degradation of concentrated CWS in pipeline flow, Proc.l3th Int. Conf. Slurry Technology, Denver (1988).Google Scholar
  12. 12.
    Chhabra, R.P., Steady non-Newtonian flow about a rigid sphere, Encyclopedia of Fluid Mechanics, 1, 983–1033 (1986).Google Scholar
  13. 13.
    Chhabra, R.P., Bubbles, Drops and Particles in Non-Newtonian Fluids, CRC Press, London (1992).Google Scholar
  14. 14.
    De Angelis, E., Modelli stazionari e non per fluidi di Bingham in viscosimetro e in condotta Ph.D. Thesis, University of Florence (1996).Google Scholar
  15. 15.
    De Angelis, E., Fasano, A., Primicerio, M., Rosso, F., Carniani, E., and Ercolani, D., Modelling sedimentation in CWS, in Hydrotransport 12: Proc. of the 12th Intl Conf. on Slurries Handling and Pipeline Transport, edited by C.A. Shook, MEP Publ. (1993), 399–414.Google Scholar
  16. 16.
    De Angelis, E., and Mancini, A., A model for the dynamics of sediments in a pipe, Mathematical and Computer Modelling, 25, 65–78 (1997).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    De Angelis, E., and Rosso, F., A functional approach to the problem of evaluating the velocity for a population of particles settling in a liquid, Proc. of the 6th European Consortium for Mathematics in Industry(1993), edited by A. Fasano and M. Primicerio, B.G. Teubner (1994), 191–8.Google Scholar
  18. 18.
    De Angelis, E., Fasano, A., Primicerio, M., Rosso, F., Carniani, E., and Ercolani, D., Sedimentation bed dynamics for fluids with yield stress in a pipe, Proc. of the 4 th Int. Conf. “Fluidodinamica Multifase nell’Impiantistica Industriale” (1994), 85–93.Google Scholar
  19. 19.
    Dedegil, M.Y., Drag coefficient and settiing velocity of particles in non-Newtonian suspensions, Trans. ASME, 109, 319–23 (1987).CrossRefGoogle Scholar
  20. 20.
    Fasano, A., A mathematical model for the dynamics of sediments in a pipeline, in Progress in Industrial Mathematics at ECMI 94, edited by H. Neunzert, Weley and Teubner Publ. (1996), 241–9.CrossRefGoogle Scholar
  21. 21.
    Fasano, A., and Primicerio, M. Modelling the rheology of a coal-water slurry, Proc. of the 4th Europ. Consortium on Mathematics in Industry, edited by H.J. Wacker and W. Zulhener, B.G. Teubner and Kluwer Academic Publ. (1991), 269–74.CrossRefGoogle Scholar
  22. 22.
    Fasano, A., and Primicerio, M., New results on some classical parabolic free boundary problems, Quart. Appl. Math., 38, 439–60 (1990).MathSciNetGoogle Scholar
  23. 23.
    Fasano, A., Manni, E., and Primicerio, M., Modelling the dynamics of fluidizing agents in coal—water slurries, Proc. of the International Symposium on Nonlinear Problems in Engineering and Science, edited by S. Xiao and X. Hu, Science Press, Beijing (1992), 64–71.Google Scholar
  24. 24.
    Fasano, A., Primicerio, M., and Rosso, F., On quasi-steady axisymmetric flows of Bingham type with stress-induced degradation, Computing, 49, 213–37 (1992).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Galdi, G. P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I: Linearized Stationary Problems,Springer Tracts in Natural Philosophy, 38, Springer Verlag (1994).Google Scholar
  26. 26.
    Gianni, R., Pezza, L., and Rosso, F., The constant flow rate problem for fluids with increasing yield stress in a pipe, Theoretical and Computational Fluid Mechanics, 7, 6, 477–93 (1995).CrossRefGoogle Scholar
  27. 27.
    Leal, L.G., Particle motions in a viscous fluid, Ann. Rev. Fluid Mech., 12, 435–76 (1980).MathSciNetCrossRefGoogle Scholar
  28. 28.
    Mancini, A., Evoluzione di profili di sedimentazione nel trasporto di sospensioni concentrate in condotta, Thesis Dept. Math. “U.Dini,” University of Florence (1995).Google Scholar
  29. 29.
    Mancini, A., Evolution of sediment profiles in the transport of coal water slurries through a pipeline, in Progress in Industrial Mathematics at ECMI 96, edited by M. Brans, M. Bendsoe, and M.P. Sorensen, Teubner, Stuttgart (1997), 441–9.Google Scholar
  30. 30.
    Oseen, C.W., Über die Stokessche Formel und über eine Verwandte Aufgabe in der Hydrodynamik, Ark. Mat. Astron. Fys., 6, 1–20 (1910).Google Scholar
  31. 31.
    Oseen, C.W. Neuene Methoden und Ergebnisse in der Hydrodynamik, Akademische Verlagsgesellshalt, Leipzig (1927).Google Scholar
  32. 32.
    Primicerio, M., Dynamics of slurries, Proc. of the 2nd European Consortium on Mathematics in Industry 1987, edited by H. Neunzert, B.G. Teubner (1988), 121–34.Google Scholar
  33. 33.
    Parrini, S., Moto stazionario di un fluido di Bingham in una condotta con sezione trasversale non circolare Thesis Dept. Math. “U. Dini,”University of Florence (1995).Google Scholar
  34. 34.
    Rosso, F., On two inverse problems in hydrodynamics of non-Newtonian fluids, in Recent Advances in Mechanics of Structured Continua--1993, edited by M. Massoudi and K.R. Rajagopal, 160, ASME Publ., New York (1993) 95–103.Google Scholar
  35. 35.
    Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Cam. Phil. Soc., 9, 8–27 (1851).Google Scholar
  36. 36.
    Terenzi, A., Carniani, E., Donati, E., and Ercolani, D., Problems on nonlinear fluid dynamics in industrial plants, this volume.Google Scholar
  37. 37.
    Thomas, A.D., Settling of particles in a horizontally sheared Bingham plastic, 1st Nat. Conf. on Rheology, Melbourne, 89–92 (1979).Google Scholar
  38. 38.
    Tyabin, N.V. Some questions on the theory of viscoplastic flow of disperse systems, Colloid J. U.S.S.R., 15, 153–9 (1953).Google Scholar
  39. 39.
    Turian, R.M., Hsu, F.L., Avramidis, K.S., Sung, D.J., and Allendorfer, R.K., Settling and rheology of suspensions of narrow-sized coal particles, AIChE J., 38, 969–87 (1992).CrossRefGoogle Scholar
  40. 40.
    Valentik, L., and Whitmore, R.L., The terminal velocity of spheres in Bingham plastics, Brit. J. Appl. Phys., 16, 1197–1203 (1965).CrossRefGoogle Scholar
  41. 41.
    Wildemuth, C.R., and Williams, M.C., Viscosity of suspensions modeled with a shear-dependent maximum packing fraction, Rheol. Acta, 23, 627–35 (1984).CrossRefGoogle Scholar
  42. 42.
    Wilson, K.C., Hydrotransport 1 to 12, better by the dozen, opening address, Hydrotransport 12, Int. Conf. on Slurry Handling and Pipeline Transport, edited by C.A. Shook, BHR Group Conference Series, Publication No. 6, Mechanical Engineering Publication Ltd., London (1993).Google Scholar
  43. 43.
    Yoshioka, N., Adachi, K., and Ishimura, H., On creeping flow of a viscoplastic fluid past a sphere, Kagaku Kogaku, 10, 1144–52 (1971) (in Japanese).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2000

Authors and Affiliations

  • Fabio Rosso
    • 1
  1. 1.Dipartimento di Matematica “U. Dini”Universitá di FirenzeFirenzeItaly

Personalised recommendations