Skip to main content

Micromechanics of Poroelastic Rocks

  • Chapter
Heterogeneous Media

Abstract

The theory of poroelasticity of rock-like media is developed in a manner that assigns a central role to the micro-scale deformation of the pore space. A simplified theory that describes the deformation of porous media under hydrostatic loading, under drained and undrained conditions, is first developed in a fully nonlinear form. The linearized theory of coupled mechanical deformation and fluid flow is then presented. The chapter concludes with a discussion of the effect of pore microstructure on the constitutive parameters of poroelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anagnostopoulos, A., Geotechnical Engineering of Hard Soils — Soft Rocks, Balkema, Rotterdam (1993).

    Google Scholar 

  2. Andersen, M. A., and Jones, F. O., Jr., A comparison of hydrostatic-stress and uniaxial strain pore-volume compressibilities using nonlinear elastic theory, in Proc. 26th U. S. Symp. Rock Mech., Ashworth, E., ed., Balkema, Rotterdam (1985), pp. 403–410.

    Google Scholar 

  3. Anderson, O. L., Schreiber, E., Liebermann, R., and Soga N., Some elastic constant data on minerals relevant to geophysics, Rev. Geophys. Space Phys., 6 (1968), 491–524.

    Article  Google Scholar 

  4. Bear, J., Dynamics of Fluids in Porous Media, Dover, New York (1988).

    MATH  Google Scholar 

  5. Bernabe, Y., Brace, W. F., and Evans, B., Permeability, porosity, and pore geometry of hot-pressed calcite, Mechanics of Materials, 1 (1982), 173–183.

    Article  Google Scholar 

  6. Berryman, J. G., Estimating effective moduli of composites using quantitative image analysis, in Random Media and Composites, Kohn, R. V., and Milton, G. W., eds., Soc. Ind. Appl. Math., Philadelphia (1989), pp. 3–12.

    Google Scholar 

  7. Berryman, J. G., Effective stress for transport properties of inhomogeneous porous rock, J. Geophys. Res., 97 (1992), 17, 409-417, 424.

    Article  Google Scholar 

  8. Biot, M. A., General theory of three-dimensional consolidation, J. Appl. Phys., 12 (1941), 155–164.

    Article  MATH  Google Scholar 

  9. Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range, J. Acoust. Soc. Am., 28 (1956), 168–178.

    Article  MathSciNet  Google Scholar 

  10. Biot, M. A., Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am., 28 (1956), 179–191.

    Article  MathSciNet  Google Scholar 

  11. Biot, M. A., and Willis, D., The elastic coefficients of the theory of consolidation, ASME J. Appl. Mech., 24 (1957), 594–601.

    MathSciNet  Google Scholar 

  12. Black, A. D., Dearing, H. L., and DiBona, B. G., Effects of pore pressure and mud filtration on drilling rates in a permeable sandstone, SPE J. Petrol. Tech., 37 (1985), 1671–1681.

    Google Scholar 

  13. Bourbié, T., Coussy, O., and Zinszner, B., Acoustics of Porous Media, Gulf Publishing, Houston (1987).

    Google Scholar 

  14. Brandt, H., A study of the speed of sound in porous granular media, ASME J. Appl. Mech., 22 (1955), 479–486.

    MATH  Google Scholar 

  15. Brown, R. J. S., and Korringa, J., On the dependence of the elastic properties of a porous rock on the compressibility of the pore fluid, Geophysics, 40 (1975), 608–616.

    Article  Google Scholar 

  16. Carpenter, C. B., and Spencer, G. B., Measurements of compressibility of condolidated oil-bearing sandstones, Report 3540, U. S. Bureau of Mines, Denver (1940).

    Google Scholar 

  17. Carroll, M. M., An effective stress law for anisotropic elastic deformation, J. Geophys. Res., 84 (1979), 7510–7512.

    Google Scholar 

  18. Carroll, M. M., and Katsube, N., The role of Terzaghi effective stress in linearly elastic deformation, ASME J. Energy Resour. Tech., 105 (1983), 509–511.

    Article  Google Scholar 

  19. Cheng, A. H.-D., Material coefficients of anisotropic poroelas-ticity, Int. J. Rock Mech., 34 (1997), 199–205.

    Article  Google Scholar 

  20. Cheng, C. H., and Toksöz, M. N., Inversion of seismic velocities for the pore aspect ratio spectrum of a rock, J. Geophys. Res., 84 (1979), 7533–7543.

    Article  Google Scholar 

  21. Chilingarian, G. V., and Wolf, K. H., Compaction of Coarse-Grained Sediments, Vol. 1, Elsevier, Amsterdam (1975).

    Google Scholar 

  22. Charlez, P. A., Rock Mechanics, Vol. 2: Petroleum Applications, Éditions Technip, Paris (1997).

    Google Scholar 

  23. Clark, N. J., Jr., Handbook of Physical Constants, Geol. Soc. Am., New York (1966).

    Google Scholar 

  24. Cleary, M. P., Elastic and dynamic response regimes of fluidimpregnated solids with diverse microstructures, Int. J. Solids Struct., 14 (1978), 795–819.

    Article  MATH  Google Scholar 

  25. DeMarsily, G., Quantitative Hydrogeology, Academic Press, San Diego (1986).

    Google Scholar 

  26. Detournay, E., and Cheng, A. H.-D., Fundamentals of poroelasticity, in Comprehensive Rock Engineering, Hudson, J. A., ed., Pergamon, Oxford (1993), pp. 113–171.

    Google Scholar 

  27. Dewers, T., and Ortoleva, P. J., Mechanico-chemical Coupling in Stressed Rocks, Geochem. Cosmochem. Acta, 53 (1989), 1243–1258.

    Article  Google Scholar 

  28. Digby, P. J., The effective elastic moduli of porous granular rocks, ASME J. Appl. Mech., 48 (1981), 803–808.

    Article  MATH  Google Scholar 

  29. Dobrynin, V. M., Effect of overburden pressure on some properties of sandstones, SPE J., 2 (1962), 360–366.

    Google Scholar 

  30. Domenico, S. N., Elastic properties of unconsolidated porous sand reservoirs, Geophysics, 42 (1977), 1339–1368.

    Article  Google Scholar 

  31. Dullien, F. A. L., Porous Media: Fluid Transport and Pore Structure, 2nd ed., Academic Press, San Diego (1992).

    Google Scholar 

  32. Edwards, R. H., Stress concentrations around spheroidal inclusions and cavities, ASME J. Appl. Mech., 18 (1951), 19–27.

    MATH  Google Scholar 

  33. Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. Roy. Soc. London A, 241 (1957), 376–396.

    Article  MathSciNet  MATH  Google Scholar 

  34. Fabre, D., and Gustkiewicz, J., Poroelastic properties of limestones and sandstones under hydrostatic conditions, Int. J. Rock Mech., 34 (1997), 127–134.

    Article  Google Scholar 

  35. Fatt, I., Compressibility of sandstones at low to moderate pressures, Bull. AAPG, 42 (1958), 1924–1957.

    Google Scholar 

  36. Gassmann, F., Elastic waves through a packing of spheres, Geophysics, 15 (1951), 673–685.

    Article  Google Scholar 

  37. Gassmann, F., Uber die Elasticität Poröser Medien (On the elasticity of porous media), Viert. Naturforsch. Gesell. Zürich, 96 (1951), 1–23.

    MathSciNet  Google Scholar 

  38. Geertsma, J., The effect of fluid decline on volumetric changes of porous rocks, Petrol. Trans. AIME, 210 (1957), 331–340.

    Google Scholar 

  39. Geertsma, J., A remark on the analogy between thermoelasticity and the elasticity of saturated porous media, J. Mech. Phys. Solids, 6 (1957), 13–16.

    Article  MATH  Google Scholar 

  40. Green, D. H., and Wang, H. F., Fluid pressure response to undrained compression in saturated sedimentary rock, Geophysics, 51 (1986), 948–956.

    Article  Google Scholar 

  41. Green, D. H., and Wang, H. F., Specific storage as a poroelastic coefficient, Water Resour. Res., 26 (1990), 1631–1637.

    Article  Google Scholar 

  42. Guéguen, Y., and Palciauskas, V., Introduction to the Physics of Rocks, Princeton University Press, Princeton (1994).

    Google Scholar 

  43. Hart, D. J., and Wang, H. F., Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone, J. Geophys. Res., 100 (1995), 17741–17751.

    Article  Google Scholar 

  44. Hashin, Z., and Shtrikman, S., Note on a variational approach to the theory of composite elastic materials, J. Franklin Inst., 271 (1961), 336–341.

    Article  Google Scholar 

  45. Hickey, C. J., Spanos, T. J. T., and DelaCruz, V., Deformation parameters of permeable media, Geophys. J. Int., 121 (1995), 359–370.

    Article  Google Scholar 

  46. Inglis, C. E., Stresses in a plate due to the presence of cracks and sharp corners, Trans. Just. JVav. Arch., 55 (1913), 219–230.

    Google Scholar 

  47. Jaeger, J. C., and Cook, N. G. W., Fundamentals of Rock Mechanics, 3rd ed., Chapman & Hall, London (1979).

    Book  Google Scholar 

  48. Jasiuk, I., Cavities vis-a-vis rigid inclusions: elastic moduli of materials with polygonal inclusions, Int. J. Solids Struct., 32 (1995), 407–422.

    Article  MATH  Google Scholar 

  49. Kachanov, M., Elastic solids with many cracks and related problems, Adv. Appl. Mech., 30 (1993), 259–445.

    Article  Google Scholar 

  50. Kantorovich, L. V., and Krylov, V. I., Approximate Methods of Higher Analysis, Noordhoff, Groningen (1958).

    MATH  Google Scholar 

  51. Kolosov, G. V., On an Application of the Theory of Functions of a Complex Variable to a Plane Problem in the Mathematical Theory of Elasticity, Ph. D. diss., Dorpat University (1909). (In Russian.)

    Google Scholar 

  52. Kumpel, H. J., Poroelasticity — parameters reviewed, Geophys. J. Int., 105 (1991), 783–799.

    Article  Google Scholar 

  53. Laurent, J., Bouteca, M. J., Sarda, J.-P., and Bary, D., Pore-pressure influence in the poroelastic behavior of rocks: experimental studies and results, SPE Form. Eval., 8 (1993), 117–122.

    Google Scholar 

  54. Lee, C.-H., and Farmer, I., Fluid Flow in Discontinuous Rocks, Chapman & Hall, London (1993).

    Google Scholar 

  55. Long, J. C. S., Remer, J. S., Wilson, C. R., and Witherspoon, P. A., Porous media equivalents for networks of discontinuous fractures, Water Resour. Res., 18 (1982), 645–658.

    Article  Google Scholar 

  56. Matthews, C. S., and Russell, D. G., Pressure Buildup and Flow Tests in Wells, Soc. Petrol. Eng., Dallas (1967).

    Google Scholar 

  57. Mavko, G. M., Velocity and attenuation in partially molten rocks, J. Geophys. Res., 85 (1980), 5173–5189.

    Article  Google Scholar 

  58. Mavko, G., and Nur, A., Melt squirt in the asthenosphere, J. Geophys. Res., 80 (1975), 1444–1448.

    Article  Google Scholar 

  59. Mavko, G., and Nur, A., The effect of nonelliptical cracks on the compressibility of rocks, J. Geophys. Res., 83 (1978), 4459–4468.

    Article  Google Scholar 

  60. Mochizuki, S., Attenuation in partially saturated rocks, J. Geophys. Res., 87 (1982), 8598–8604.

    Article  Google Scholar 

  61. Murphy, W. F., Acoustic measurements of partial gas saturation in tight sandstones, J. Geophys. Res., 89 (1984), 11, 549 11,559.

    Article  Google Scholar 

  62. Muskhelishvili, N. I., Some Basic Problems of the Mathematical Theory of Elasticity, 4th ed., Noordhoff, Groningen (1953).

    MATH  Google Scholar 

  63. Newman, G. H., Pore volume compressibility of consolidated, friable, and unconsolidated reservoir rocks under hydrostatic loading, SPE J. Petrol. Tech., 25 (1973), 129–134.

    Google Scholar 

  64. Nur, A., and Byerlee, J. D., An exact effective stress law for elastic deformation of rock with fluids, J. Geophys. Res., 76 (1971), 6414–6419.

    Article  Google Scholar 

  65. Nye, J. F., Physical Properties of Crystals, Clarendon Press, Oxford (1957).

    MATH  Google Scholar 

  66. O’Connell, R. J., and Budiansky, B., Seismic velocities in dry and saturated cracked solids, J. Geophys. Res., 79 (1974), 5412–5426.

    Article  Google Scholar 

  67. O’Donnell, T. P., and Steif, P. S., Elastic-plastic compaction of a two-dimensional assemblage of particles, ASME J. Eng. Mater. Tech., 111 (1989), 404–408.

    Article  Google Scholar 

  68. Palciauskas, V. V., and Domenico, P. A., Fluid pressures in deforming porous rocks, Water Resour. Res., 25 (1989), 203–213.

    Article  Google Scholar 

  69. Peltier, B., and Atkinson, C., Dynamic pore pressure ahead of the bit, SPE Drill. Eng., 2 (1987), 351–358.

    Google Scholar 

  70. Pettijohn, F. J., Sedimentary Rocks, 2nd ed., Harper & Row, New York (1957).

    Google Scholar 

  71. Plona, T., Observation of a second bulk compressional wave in a porous medium at ultrasonic frequencies, Appl Phys. Letts., 36 (1980), 259–261.

    Article  Google Scholar 

  72. Pollard, D. D., Equations for stress and displacement fields around pressurized elliptical holes in elastic solids, Math. Geol., 5 (1973), 11–25.

    Article  Google Scholar 

  73. Prigogine, I., Introduction to Thermodynamics of Irreversible Processes, Interscience, London (1961).

    MATH  Google Scholar 

  74. Raghavan, R. and Miller, F. G., Mathematical analysis of sand compaction, in Compaction of Course-Grained Sediments, vol. I, Chilingarian, G. V., and Wolf, K. H. eds., Elsevier, Amsterdam (1975), pp. 403–524.

    Chapter  Google Scholar 

  75. Rice, J. R., and Cleary, M. P., Some basic stress diffusion solutions for fluid saturated elastic porous media with compressible constituents, Rev. Geophys. Space Phys., 14 (1976), 227–241.

    Article  Google Scholar 

  76. Robin, P.-Y. F., Note on effective pressure, J. Geophys. Res., 78 (1973), 2434–2437.

    Article  Google Scholar 

  77. Sadowsky, M. A., and Sternberg, E., Stress concentration around a triaxial ellipsoidal cavity, ASME J. Appl. Mech., 16 (1949), 149–157.

    MathSciNet  MATH  Google Scholar 

  78. Savin, G. N., Stress Concentration Around Holes, Pergamon, New York (1961).

    Google Scholar 

  79. Segall, P., Earthquakes triggered by fluid extraction, Geology, 17 (1989), 942–946.

    Article  Google Scholar 

  80. Simmons, G. and Wang, H. F., Single Crystal Elastic Constants and Calculated Aggregate Properties: A Handbook, MIT Press, Cambridge (1971).

    Google Scholar 

  81. Skempton, A. W., The pore pressure coefficients A and B, Geotechnique, 4 (1954), 143–147.

    Article  Google Scholar 

  82. Sokolnikoff, I. S., Mathematical Theory of Elasticity, McGraw-Hill, New York (1956).

    MATH  Google Scholar 

  83. Tao, G., King, M. S., and Nabibidhendi, M., Ultrasonic wave propagation in dry and brine-saturated sandstones as a function of effective stress — laboratory measurements and modelling, Geophys. Prosp., 43 (1995), 299–327.

    Article  Google Scholar 

  84. Teeuw, D., Prediction of formation compaction from laboratory compressibility data, Soc. Pet. Eng. J., 11 (1971), 263–271.

    Google Scholar 

  85. Thompson, M., and Willis, J. R., A reformulation of the equations of anisotropic poroelasticity, ASME J. Appl. Mech., 58 (1991), 612–616.

    Article  MATH  Google Scholar 

  86. Vernik, L., Predicting porosity from acoustic velocities in siliciclastics: a new look, Geophysics, 62 (1997), 118–128.

    Article  Google Scholar 

  87. Verruijt, A., Elastic storage in aquifers, in Flow Through Porous Media, de Wiest, R. J. M., ed., Academic Press, New York (1969), pp. 331–376.

    Google Scholar 

  88. Walsh, J. B., The effect of cracks on the compressibility rocks, J. Geophys. Res., 70 (1965), 381–389.

    Article  MATH  Google Scholar 

  89. Walsh, J. B., Brace, W. F., and England, A. W., Effect of porosity on compressibility of glass, J. Am. Ceram. Soc, 48 (1965), 605–608.

    Article  Google Scholar 

  90. Wang, H. F., Quasi-static poroelastic parameters in rock and their geophysical applications, Pure Appl. Geophys., 141 (1993), 269–286.

    Article  Google Scholar 

  91. Warren, T. M., and Smith, M. B., Bottomhole stress factors affecting drilling rate at depth, SPE J. Petrol. Tech., 37 (1985), 1523–1533.

    Google Scholar 

  92. White, F. M., Viscous Fluid Flow, McGraw-Hill, New York, (1974).

    MATH  Google Scholar 

  93. Worthington, P. F., Daines, J. M., Bratli, R. K., and Nicolaysen, R., Comparative evaluation of core compaction corrections for clastic reservoirs, Log Analyst, 38 (1997), 19–29.

    Google Scholar 

  94. Yew, C. H., and Yogi, P. N., The determination of Biot’s parameters for sandstones, Part 1: Static tests, Exp. Mech., 18 (1978), 167–172.

    Article  Google Scholar 

  95. Yew, C. H., Yogi, P. N., and Gray, K. E., Estimation of the mechanical properties of fluid-saturated rocks using the measured wave motions, ASME J. Energy Resour. Tech., 101 (1979), 112–116.

    Article  Google Scholar 

  96. Zimmerman, R. W., Discussion of“The constitutive theory for fluid-filled porous materials”by N. Katsube, ASME J. Appl. Mech., 52 (1985), 983.

    Article  Google Scholar 

  97. Zimmerman, R. W., Compressibility of an isolated spheroidal cavity in an isotropic elastic medium, ASME J. Appl. Mech., 52 (1985), 606–608.

    Article  Google Scholar 

  98. Zimmerman, R. W., Compressibility of two-dimensional cavities of various shapes, ASME J. Appl. Mech., 53 (1986), 500–504.

    Article  Google Scholar 

  99. Zimmerman, R. W., Compressibility of Sandstones, Elsevier, Amsterdam (1991).

    Google Scholar 

  100. Zimmerman, R. W., Hashin-Shtrikman bounds on the Poisson ratio of a composite material, Mech. Res. Commun., 19 (1992), 563–569.

    Article  MathSciNet  MATH  Google Scholar 

  101. Zimmerman, R. W., Myer, L. R., and Cook, N. G. W., Grain and void compression in fractured and porous rocks, Int. J. Rock Mech., 31 (1994), 179–184.

    Article  Google Scholar 

  102. Zimmerman, R. W., Somerton, W. H., and King, M. S., Compressibility of porous rocks, J. Geophys. Res., 91 (1986), 12765–12778.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zimmerman, R.W. (2000). Micromechanics of Poroelastic Rocks. In: Markov, K., Preziosi, L. (eds) Heterogeneous Media. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-1332-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-1332-1_5

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-7098-0

  • Online ISBN: 978-1-4612-1332-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics